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We present a systematic way to compute the scaling exponents of the structure functions
of the Kraichnan model of turbulent advection in a series of powers of ξ , adimensional
coupling constant measuring the degree of roughness of the advecting velocity field.
We also investigate the relation between standard and renormalization group improved
perturbation theory. The aim is to shed light on the relation between renormalization
group methods and the statistical conservation laws of the Kraichnan model, also known
as zero modes.
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1. INTRODUCTION

Fully developed turbulence seems to have properties that are familiar from an
another branch of physics, the theory of critical phenomena. Thus certain observ-
ables are scale invariant, i.e. they exhibit power-law dependence on length scale.
This power-law seems to be reasonably well captured by dimensional analysis,
with however systematic discrepancies occurring that don’t seem to have simple
structure. This resembles the phenomena of second order phase transitions where
dimensional arguments (mean field theory) do a reasonable job, but don’t fully
account for the true scaling exponents. Furthermore, in both cases the observed
scaling exponents seem to exhibit universality, i.e. a relative independence on many
details of the system: in the case of critical phenomena details of the microscopic
Hamiltonian are unimportant, only symmetries matter, in the case of turbulence,
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microscopic details of the forcing mechanism that maintains the turbulent state
seem irrelevant.

Important differences occur too. On the practical level, in the theory of critical
phenomena a rather explicit starting point for calculating correlation functions
exists in the form of Gibbs measure given in terms of an explicit Hamiltonian.
This is directly accessible numerically and analytically one can gain qualitative
understanding by perturbative study around the upper (and sometimes lower)
critical dimension. In case of turbulence, while the dynamical equations governing
fluid motion have been known for long, the analog of Gibbs distribution is not. The
nature of the stationary state describing temporal averages of measurements is a
dynamical problem that is unsolved. Also, there doesn’t seem to be a parameter
in the problem whose special value would make the dimensional analysis exact
(like the dimension of space in critical phenomena) and which could then provide
a basis for a perturbative study of the problem of anomalous scaling.

On the more fundamental level there also are differences. The modern renor-
malization group (RG) theory of critical phenomena is based on locality in position
space. The effective theory of any given scale is given by a Gibbs state defined by a
local Hamiltonian. The RG relates these different effective theories to each other.
In turbulence the stationary state is characterized by fluxes (“cascades”) of con-
served quantities (energy and in 2d enstrophy). This cascade process is believed
to be local in wave number space and it is not clear what the right RG description
is. Both direct (21,25,26,50) and inverse (see Ref. 23 for review and also Ref. 4 for
criticism) RG’s have been proposed in the past. The former is analogous to the
theory of critical phenomena based on locality and coarse graining in physical
space whereas the latter coarse grains in wave vector space preserving locality
there.

Theoretical progress in critical phenomena came in two ways: by exactly
solvable models with nontrivial scaling (the 2d Ising model) and by perturbative
RG analysis near a Gaussian theory (ε-expansion). For Navier-Stokes turbulence
these options are not available. An analog of the ε-expansion is provided by
considering random stirring where the power spectrum of the force concentrates
at large wave numbers k,being proportional to k4−d+2ε . Unfortunately for small ε

this is very different from the turbulent situation where the force is concentrated in
low wave numbers. Nevertheless interesting lessons can be learned also from such
small ε-expansions as witnessed by the renormalization group studies carried
out by the St. Petersburg school (see for example Refs. 4, 51 and references
therein).

A different approach which can be pursued in the investigation of fully
developed turbulence is to consider phenomenological models able to capture some
of the properties of turbulent fluid motion. Among such models, the Kraichnan
model of passive advection(35,36) has permitted in the last years to shed some
light on the mechanisms underlying the genesis of intermittency. (10,11,17,18,28,30)
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An exhaustive review of the results derived from the Kraichnan model can be
found in Ref. 24.

The simplifying assumption which defines the Kraichnan model is the re-
placement of the Navier-Stokes velocity field advecting the scalar observable with
a random field, Gaussian and δ-correlated in time. This latter assumption is cru-
cial as it ensures that the correlation functions of the scalar field satisfy closed
Hopf equations that allow to relate the n-point functions to n − 2-point functions
via Green functions of differential operators built out of the spatial part of the
velocity covariance. The latter involves a parameter ξ describing the smoothness
of the velocity field: its realizations are Holder continuous with exponent less than
ξ /2.

The properties of the theory versus ξ are particularly interesting. At ξ equal
zero, the effect of the advection is to “renormalize” the microscopic molecular
diffusivity to a macroscopic eddy-diffusivity. The resulting theory is Gaussian and
provides a natural starting point for a perturbative investigation of the system in
powers of ξ . Although it can be argued that the value of ξ ideally corresponding
to a turbulent flow is equal to 4/3, the scalar field tends already for small values
of ξ to a steady state where an inertial range sets in. Thus, the turbulent regime it
is accessible in perturbation theory. This is at variance with what happens for the
ε-expansion of the Navier-Stokes equation where the perturbative expansion has
its starting point in a model with vanishing inertial range.

The scalar correlation functions were seen to have the zero molecular diffu-
sivity limit order by order of the ξ -expansion. This result was subsequently proved
rigorously for all ξ in Ref. 37. However, the main result of the ξ -perturbation
theory has been the derivation of corrections to the naive scaling prediction of
scaling exponents of the structure functions of the scalar (10,11,28,30) a result that
also was obtained in a perturbative expansion of the structure functions in inverse
powers of the spatial dimension.(17,18,44)

Both perturbative approaches were based on the study of the Hopf equations
satisfied by the equal time correlations of the scalar. In the inertial range where
forcing and dissipative effects are negligible, these equations reduce in the sta-
tionary state to the annihilation of the correlation function of order n by a linear
operator M∗

n . For each n, the operators M∗
n admit scaling zero modes that can

be computed perturbatively in ξ (or in 1/d) and can be shown to determine the
leading scaling behavior of the structure functions.

The zero modes are statistically conserved quantities of the scalar field.
The presence of such conservation laws provides a mechanism underlying the
phenomenon of intermittency. Indeed, they were observed numerically both in
passive scalar advection by a two-dimensional Navier-Stokes velocity field(16)

and in shell models (6,9,58) (see also Refs. 13, 38).
The concept of zero mode has therefore proved fruitful both to shed light

on properties of more realistic models of turbulence and in the analysis of the
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Kraichnan model. However, an issue which was left open is how to compare
the small ξ expansion of Refs. 10, 30 with the field-theoretic methods based on
perturbative expansions of the Martin-Siggia-Rose functional that describes the
time space time correlation functions of the theory. The interest of such question
is threefold.

First, the Martin-Siggia-Rose formalism allows to study all the correlation
functions described by the theory without restriction to equal times. Hence it
permits to inquire what the standard perturbation theory in ξ can say about more
general observables.

The second reason of interest is that the Martin-Siggia-Rose provides a natural
framework to define an algorithm to compute, at least in principle, all higher orders
of the perturbative expansion. In the zero mode approach, scaling exponents have
been computed using scaling Ansatze, which have provided the first order in
ξ term (or in some special cases exact results, see for example Ref. 52). On the
contrary, using the Martin-Siggia-Rose formalism, ultraviolet renormalization and
short distance expansion, expressions up to O(ξ 3) of the scaling exponents were
derived in Refs. 2, 3, 5.

The fact that ultra-violet renormalization proves useful in the context of the
Kraichnan model might appear at first glance surprising. In general, renormal-
ization is used to make sense of perturbative expansions affected by ultra-violet
divergences. On the other hand the Kraichnan model, at least as it should be de-
fined whenever the small ξ expansion is used, exhibits a well defined small scale
behavior. It is therefore interesting to establish a precise connection between the
zero-mode and the ultra-violet renormalization methods. Zero modes provide the
leading inertial range asymptotics of equal time correlations. It was pointed out
already in Ref. 11 that taking the Mellin transform yields a well defined way to
identify the zero mode contribution given the full, all scales, expression of cor-
relation functions. In the present paper this idea is developed in order to show
how it can be implemented in principle to all orders in perturbation theory. As
an example, explicit expressions of isotropic and anisotropic scaling exponents of
the structure functions are obtained to second order in ξ . The result does not just
recover the result found with the renormalization group in Ref. 5 but establishes
the relation between the two methods and the reason why the predictions must
coincide to all orders in perturbation theory.

The third reason of interest is the relationship between the different renor-
malization groups, direct and inverse, that have been proposed for turbulence. In
particular the concept of inverse or infra-red renormalization has been proposed
as an alternative tool to solve scaling in the Kraichnan model. (31,32) The special
features of the Kraichnan model are probably not suited to settle the issue which
of the approaches is more natural. However it provides a simple case study of what
infra-red renormalization is about.
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The scope of the present paper is to address in a comprehensive way the these
three issues.

The paper is organized as follows. In the first Sec. 2 the passive scalar
equation is introduced and the definition of the Kraichnan ensemble is given. In
Sec. 3 the asymptotic expression of the velocity field in the physically relevant
ranges are derived. The analysis of the correlation of the velocity field shows that
the roughness parameter ξ lend itself as a parameter for a perturbative construction
of the solution of the Kraichnan model.

In Sec. 4 the Hopf equations governing the dynamics of equal time corre-
lation functions are recalled. Sec. 5 delves into the relation between the Mellin
transform of the solution and statistical conservation laws. Statistical conserva-
tion laws are specified by homogeneous solutions of the Hopf equations admis-
sible in the inertial range but not matching the boundary conditions at large
spatial scales. Such solutions, referred as zero modes can be interpreted as the
residues of the first poles of the Mellin transform of the full solution of the Hopf
equation.

In Sec. 6 we recall the analysis of the zero modes in Ref. 11 which allows to
predict the inertial range asymptotics of the structure functions of the scalar field.
The prediction is encoded in a scaling Ansatz which can be tested in a perturbative
expansion in powers of the Holder exponent of the velocity field.

The perturbative expansion is couched in the field theoretic formalism
through the introduction of a Martin-Siggia-Rose generating function (Sec. 7).
The limit of zero Holder exponent is shown to provide a Gaussian limit around
which it is possible to develop a perturbative expansion according to standard
Feynman rules.

In Sec. 8 the explicit expression of the scaling exponent is given up to second
order in ξ . The calculation is based on the use of Mellin transform technique
described in Sec. 6. Technical details of the evaluation of the integrals are deferred
to appendices C, D and Ref. 53.

A consequence of the scaling Ansatz of Sec. 6 is that the scaling exponent
of the structure functions also govern the blow up rate of scalar gradients versus
the dissipative scale. This is recalled in Sec. 9 where the exponents are again
evaluated to the second order in ξ , the evaluation being considerably easier than
via the structure functions.

In Sec. 10 the Wilson’s formulation of the renormalization group is recalled
first in the traditional direct form and then in the inverse setup. In Sec. 11 the
infrared scaling fields exhibiting the anomalous scaling of the structure functions
are derived and in Sec. 13 the ultraviolet scaling fields responsible to the scaling
of the scalar gradients.

The last section is devoted to conclusions. In an appendix some details of
computations are collected.
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2. PASSIVE ADVECTION BY A TURBULENT FLUID

AND THE KRAICHNAN MODEL

The passive scalar equation describes a scalar quantity θ (x, t) which is ad-
vected by a fluid moving with velocity v(x, t) and diffuses with molecular diffu-
sivity κ:

∂tθ + v · ∂xθ − κ

2
∂2θ = f (1)

The molecular diffusivity κ describes microscopic dissipative effects. The role of
the force term f is to provide a source for the scalar in order to sustain the system
which otherwise would decay under the effect of dissipation.

A turbulent steady state with large inertial range sets in if the forcing acts
over spatial scales much larger than those where dissipation becomes relevant.
The details of the forcing are supposed to be irrelevant for inertial range scaling.
It is therefore convenient to chose the forcing as a Gaussian field of zero average
and covariance

≺ f (x1, t1) f (x2, t2) � = δ(t2 − t1)F

(
x1 − x2

L F

)
(2)

The spatial part of the covariance F is a smooth function decaying rapidly at
infinity and satisfying

F(0) = F� > 0 (3)

Hence the constant L F specifies the characteristic scale (the integral scale or the
correlation length) of the forcing. The delta correlation in time in (2) means that
(1) is a stochastic (partial) differential equation.

In realistic models of turbulence the velocity field is specified by a solution
of the incompressible Navier-Stokes equation. One would like to understand the
typical behavior of the scalar given a typical realization of v from an ensemble
of such solutions. In the Kraichnan model (36) this ensemble is replaced by an
ensemble of Gaussian random velocity fields which is chosen so as to mimic some
properties that are thought to be crucial of real turbulent velocity ensembles.

One considers random velocity fields with Gaussian statistics having zero
average and covariance

≺ vα(x1, t1)vβ(x2, t2) � = δ(t2 − t1)Dαβ(x1 − x2; m, M). (4)

Real turbulent velocities have two characteristic length scales, the short, dissipative
scale M−1 and the long integral scale m−1. These are modeled in the Kraichnan
ensemble by an ultraviolet cutoff M and infrared cutoff m in wave numbers entering
the spatial part of the covariance in (4). Moreover, realistic turbulent velocities
are approximately self similar for scales between the dissipative and the integral
scales.
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The simplest choice for the spatial part of the covariance having such prop-
erties is

Dαβ(x; m, M) = D0ξ

∫
ddq

(2π )d

eıq·x

qd+ξ
�αβ(q̂)χ[m,M](q) (5)

where

�αβ(q̂) := δαβ − q̂αq̂β (6)

with q̂ denoting the unit vector q/q, q = |q| and χ[m,M](q) is the characteristic
function of the interval [m, M].

We consider in this paper only incompressible velocities ∂ · v = 0 which
is guaranteed by the tensor �αβ . It is convenient to introduce the covariance of
velocity differences:

≺ [vα(0, t ′) − vα(x, t ′)][vβ(0, t) − vβ(x, t)] � = 2δ(t − t ′)dαβ(x; m, M) (7)

where we have introduced the spatial velocity difference covariance

dαβ(x; m, M) = Dαβ(0; m, M) − Dαβ(x; m, M)

= D0ξ

∫
ddq

(2π )d

1 − eıq·x

qd+ξ
�αβ(q̂)χ[m,M](q). (8)

As seen in detail later, dαβ is approximatively scale invariant in the inertial range:

dαβ(λx; m, M) ∼ λξ dαβ(x; m, M) (9)

for

M−1 � |x|, λ|x|, λ|x|, |x| � m−1 (10)

The constant

Dαβ(0; m, M) = D(m−ξ − M−ξ )δαβ (11)

where

D := D0
d − 1

d

�d

(2π )d
, �d := 2πd/2

�(d/2)
(12)

describes the mean square velocity field which blows up as the integral scale m−1

tends to infinity.
Finally, the delta correlation in time of the velocity fields guarantees the

statistical invariance of the velocity differences under Galilean transformations
v′(x, t) = v(x + ut, t) − u, an important property of the Navier-Stokes equation.
More important, it leads to a relatively explicit solution of the scalar statistics.

Equation (1) together with (4) defines an infinite dimensional stochastic
differential equation with multiplicative noise. In order for this object to be well
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defined according to the general rules of stochastic calculus, (22,47) it is necessary to
specify how the product between the velocity and the scalar field in (1) is defined
as the continuum limit of a finite difference stochastic equation. The Kraichnan
model is supposed to be the limit of a physical system with finite time correlations.
Hence it is natural to regard (1), (4) as infinite dimensional stochastic differential
equation in the Stratonovich sense.

3. ASYMPTOTICS EXPRESSIONS OF THE VELOCITY ENSEMBLE

Far from being the only possible, the choice (5) suits the derivation of explicit
asymptotic expressions of the velocity field. Of physical relevance is the behavior
of the velocity field in the dissipative and inertial range.

3.1. Dissipative Range Asymptotics

The dissipative range is defined by the inequalities

mx � Mx � 1 (13)

Under this assumption the Fourier exponential in (5) can be expanded in Taylor
series. Up to leading order, the expansion yields

Dαβ(x; m, M) ∼ Dαβ(0; m, M) − Dξ M−ξ
v (Mx)2T αβ(x̂, 2)

(2 − ξ )(d − 1)(d + 2)
(14)

having introduced the rank-two real-space tensor

T αβ(x̂, z) = δαβ − z

d − 1 + z
x̂α x̂β. (15)

Whenever
m

M
� 1 (16)

the eddy diffusivity

�� := Dm−ξ (17)

dominates the velocity field in the dissipative range. The leading correction to the
constant mode of the velocity field is smooth and vanishing as M−ξ tends to zero.

3.2. Inertial Range Asymptotics

The integral (8) is convergent both if the ultra-violet cut-off M is set to infinity
and the infra-red cutoff m to zero. Thus, the statistics of the velocity differences
exists in such limit. It can be determined by considering the Mellin transform of
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the spatial correlation of the velocity field

D̃αβ(x; m, z) = D0ξ

∫ ∞

0

dw

w

1

wz

∫
q>m

ddq

(2π )d

eıwq·x

qd+ξ
�αβ(q̂). (18)

The integral is convergent for Rz < 0 and can be performed explicitly. The result
is (see appendix B for details):

D̃αβ(x; m, z) = Dξc(z)
mz−ξ xz

z(z − ξ )
T αβ(x̂, z) (19)

with D and T αβ respectively defined by (12) and (15) whilst

c(z) := (d − 1 + z)

(d − 1)

�( d+2
2 )�(1 − z

2 )

2z�
(

d+2+z
2

) , c(0) = 1 (20)

is a function with simple poles for z a positive even integer.
The small scale asymptotics is derived by evaluating the inverse Mellin

transform involving an integral over z along Rz = const < 0 by pushing the
contour to the right and picking residues from the poles. This gives

Dαβ(x; m) = Dm−ξ δαβ − d�αβ(x) + o(m2−ξ x2). (21)

Thus, the residue of the pole at zero corresponds to the eddy diffusivity. The pole
at ξ specifies instead the inertial range asymptotic of the structure tensor of the
velocity field:

d�αβ(x) := Dc(ξ )xξT αβ
(
x̂, ξ

)
. (22)

Note that at ξ equal 2 the pole at z equal 2 in (19) turns from simple to double.
This indicates the existence of logarithmic corrections to the analytic behavior,
proportional to x2, of the velocity field structure function. Logarithmic corrections
are suppressed for example by redefining

D0 → D0

�(1 − ξ

2 )
. (23)

The rescaling does not affect universal quantities in the small ξ limit and will be
neglected in the present paper.

Let us finally discuss the behavior of the velocity covariance around ξ = 0.
At fixed ultra-violet cut-off it vanishes linearly with ξ . On the other hand, the
removal of the ultra-violet cut-off reduces the dissipative range to the the single
point x equal zero. There the velocity field coincides with the large scale constant
mode. In the inertial range, by (21) the velocity field is vanishing with ξ for any
nonzero m and x also after sending M to infinity. We will see that the expansion
around ξ equal zero provides a viable analytic tool for the investigation of universal
properties of advection.
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4. HOPF’S EQUATIONS AND STATISTICAL CONSERVATION LAWS

Let θ (x, t) be the solution of the stochastic differential Eq. (1) with suitable
initial condition. The equal time correlation functions:

C2n :=≺ �2n
i=1θ (xi , t) � (24)

satisfy in the Kraichnan model a solvable hierarchy of Hopf equations which are
simplest to derive in the Ito representation(22,47) of the equation. Letting v · ∂xθ be
defined with the Ito convention the Eq. (1) becomes

∂tθ + v · ∂xθ − 1

2
[κδαβ + Dαβ(0; m, M)]∂α∂βθ = f. (25)

By (11), in the Ito representation the molecular viscosity is renormalized by the
velocity field to

� = κ + D(m−ξ − M−ξ ). (26)

In a turbulent fluid macroscopic diffusion and mixing are dominated by the eddy
diffusivity generated by the fluid motion. It is therefore physically justified to
assume that the overwhelming contribution to (26) comes from the eddy diffusivity
�� introduced in equation (17).

A direct application of the Ito formula then yields

∂tC2n − �

2

∑
i

∂2
xi
C2n −

∑
i< j

Dαβ(xi − x j ; m, M)∂xα
i
∂xβ

j
C2n = F2n (27)

with

F2n := C(2n−2) ⊗ F ≡
∑
i< j

C(2n−2) (x1, . . . , x2n, t)
î ĵ

F

(
xi − x j

L F

)
(28a)

F2 := F

(
xi − x j

L F

)
. (28b)

Odd order correlation functions will be ignored since they vanish in the steady
state due to parity invariance.

For a translation invariant initial condition for θ (say 0) C2n is translation
invariant i.e. ∑

i

∂xα
i
C2n = 0 (29)

the Hopf equations reduce to the final form

∂tC2n − κ

2

∑
i

∂2
xi
C2n +

∑
i< j

dαβ (xi − x j ; m, M)∂xα
i
∂xβ

j
C2n = F2n. (30)
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Note that owing to translational invariance the 2n-point correlation in d dimensions
is a function of dn = (2n − 1)d variables.

Since (30) depends on the velocity statistics only through the structure func-
tion it has coefficients that have limits as the ultra-violet and infra-red cut-offs of
the velocity field are removed. In that limit we may define the elliptic negative
definite operators

M�
2n :=

∑
i< j

d�αβ(xi − x j )∂xα
i
∂xβ

j
. (31)

Since the coefficients d�
αβ are homogeneous functions of degree ξ these differential

operators are self similar, namely homogeneous of degree ξ − 2. The stationary
state correlation functions of the scalar satisfy the equations

−M�
2nC2n = κ

2

2n∑
i=1

∂2
xi

C2n + F2n. (32)

The terms collected on the right hand side of (32) are related to the non-universal
dependencies of the dynamics. Self-similarity breaking from the large scale can
occur through the integral scale of the forcing L F . Comparing the and the M�

2n
terms hints at the existence of a scalar field dissipative scale

� =
(

2κ

D

) 1
ξ

. (33)

The existence and uniqueness of the solutions of (32) has been proved at zero
molecular dissipation for all values of the Hölder exponent ξ < 2 of the velocity
field. (37) They are given as

C2n(X; L F ) = −
∫

dYM−1
2n (X, Y)F2n−2(Y; L F ) (34)

for X, Y ∈ R
dn . The kernel M−1

2n of the operator M�−1
2n was proved to be locally

integrable and the integrals converge absolutely as long as the forcing scale L F is
finite. By the homogeneity of M�

2n
−1 we get immediately that

C2n(X, L F ) = Ln(2−ξ )
F C2n

(
X

L F
, 1

)
(35)

i.e. the canonical dimension of C2n is n(2 − ξ ).

5. ZERO MODES AND SHORT DISTANCE ASYMPTOTICS

From (35) we see that the large L F behavior of the correlation functions
C2n is dominated by the large scale velocity: they blow up like Ln(2−ξ )

F C2n(0, 1).
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Sub-leading terms in the inertial range can be extracted by considering the Mellin
transforms

C̃2n(X, L F ; z) :=
∫ ∞

0

dw

w

C2n(wX, L F )

wz
= Ln(2−ξ )

F

X z

Lz
F

∫ ∞

0

dw

w

C2n(wX̂, 1)

wz
.

(36)
These integrals converge for the real part of z small enough and are expected to
extend to meromorphic functions of z at least for generic ξ .

The Mellin transform of the Hopf Eq. (32) is

−M�
2n X z+2−ξ C̃2n(X̂, L F ; z + 2 − ξ )

= κ

2
∂2

X X z+2C̃2n(X̂, L F ; z + 2) + X zF̃2n(X̂, L F ; z). (37)

It was observed in Ref. 11 that poles of C̃2n can occur either for values of z for
which F̃2n has a pole or for z such that the operator M�

2n has a zero mode

M�
2nZ = 0 (38)

which is a homogeneous function of degree z. The poles of F̃2n are in view of (28a)
determined by solving the Hopf equations lower in the hierarchy. One then ends
up with an asymptotic short distance expansion for C2n in terms of homogeneous
functions of the coordinates

C2n(X, L F ) =
∑

j

X ζn, j L
n(2−ξ )−ζn, j

F A j (X̂). (39)

Since the forcing covariance is smooth and has a Taylor expansion F(x) =∑
fn|x |n we conclude that the scaling exponents ζnj that may enter in (39) are

either the homogeneity degrees of the zero modes of M2n or they are determined
in terms of the previous ones ζn−1, j .

The general situation is illustrated by the case of the two-point function C2

which may be computed explicitly by quadrature if the forcing is isotropic (11):

C2(x ; L F ) = (d + ξ )
∫ ∞

x
dx1

∫ x1

0 dx2 F(x2/L F )xd−1
2

xd−1
1 [d�α

α(x1) + (d + ξ )κ]
(40)

with d�αβ specified by (22). In such a case, at zero molecular viscosity, Eq. (37)
reduces to

−d� αβ(x)∂α∂β xz+2−ξ C̃2(1, L F ; z + 2 − ξ ) = xz F̃(1, L F ; z) (41)

with solution

C̃2(x, L F ; z) = −L2−ξ

F

xz

Lz
F

(d + ξ − 1)F̃(1, 1; z − 2 + ξ )

c(ξ )(d − 1)(d + z − 2 + ξ )zD
. (42)
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Zero modes correspond to the poles in z equal zero and 2 − d − ξ respectively
associated to short and large distance asymptotics. (18,24) The only zero mode
contributing in short distances is the constant, the poles of F̃are at z = 2 − ξ + n
for nonnegative integer n.

6. ANOMALOUS SCALING OF THE STRUCTURE FUNCTIONS

Correlation functions that probe the sub-leading terms in the short distance
expansion (39) are provided by the structure functions of the scalar namely

S2n(x, L F , �) :=≺ [θ (x) − θ (0)]2n � (43)

where we denoted explicitly the dependence on the forcing scale and κ via (33).
Let us consider for simplicity isotropic forcing so that S2n is only a function of
x = |x|. We may scale it out as

S2n(x, L F , �) = x (2−ξ )nS2n

(
1,

L F

x
,
�

x

)
. (44)

Suppose S2n(1, L , �) had a limit as �. tends to zero and L tends to infinity. Then
we would conclude

S2n(x, L F , �) = An x (2−ξ )n

(
1 + o

(
x

L F
,
�

x

))
, (45)

i.e. the structure function scaling exponent would be n(2 − ξ ). This is the pre-
diction of the Obukhov–Corssin theory, (20,46) analogous to the Kolmogorov 41
theory(27,33,34,42) for Navier–Stokes turbulence that predicts there a scaling expo-
nent n/3 for the velocity n-point structure function.

To discuss the validity of the Obukhov Corssin theory, we note first that the
limit � → 0 exists for the correlation functions and thus for the structure functions
by the results of Ref. 37. The large L F behavior depends on the nature of the terms
entering the expansion (39), i.e. the zero modes of the inertial operators. Structure
functions are obtained from correlation functions by applying the finite increment
operator Ix

S2n(x, t) = IxC2n(x1, . . . , x2n, t) (46)

The operator Ix = �i ι
(i)
x with i counting the number of fields in the correlation

function generates finite field increments according to the rule ιx f (y) = f (x) −
f (0). From (46) it follows immediately that the only zero modes of C2n contributing
to S2n can be the irreducible ones, i.e. those depending on all the independent
variables x1 − xi , i = 2 . . . n.

The existence and the properties of zero modes were thoroughly investigated
in Refs. 10, 11, 17, 18, 24, 30. It was shown in Refs. 10, 30 for small ξ and in
Ref. 17 for large d that for each n > 1 there is a unique irreducible zero mode
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Z2n . The irreducible zero mode has scaling dimension ζ2n = (2 − ξ )n − ρ2n with
ρ2n > 0. In Ref. 11 further arguments were presented for the conclusion that this
zero mode enters the expansion (39) and is the dominant term. This means that
we may write

S2n(x, L F , �) = x (2−ξ )n

(
L F

x

)ρ2n

s2n

(
x

L F
,
�

x
, ξ

) (
F�

D

)n

(47)

where the function s2n has a nonzero limit as � → 0 and L F → ∞:

lim
L F →∞

lim
�→0

s2n

(
x

L F
,
�

x
, ξ

)
:= s2n(ξ ) > 0. (48)

The ratio between the constants F� and D, defined respectively in (3) and (11), is
introduced for later convenience.

It was also argued in Refs. 10, 30 that the sub-leading terms for the asymp-
totics of S2n have exponents well separated from the leading one for small ξ ,
namely

s2n

(
x

L F
, 0, ξ

)
:= s2n(ξ ) + O

((
x

L F

)2−O(ξ )
)

. (49)

We may call this the scaling Ansatz for the Kraichnan model.
It is useful to express this result in terms of the Mellin transform. Let us shift

for convenience z by 2n which is the ξ equal zero theory scaling exponent:

S̃2n(x, L; z + 2n) :=
∫ ∞

0

dw

w

S2n(wx, L)

wxz+2n
(50)

which converges for Rz small enough (actually Rz < −O(ξ )). No specific as-
sumption is made on the origin of the integral scale L appearing in (50). The
scaling Ansatz (49) then yields

S̃2n(x, L; z) := − A(z, ξ )L−nξ−z x2n+z

z − σ2n(ξ )
(51a)

σ2n(ξ ) := −nξ − ρ2n(ξ ) (51b)

with the function A having poles for values of z differing from σ2n by terms at least
of the order O(ξ 0). Furthermore, A takes on the first pole of the Mellin transform
the value

A(σ2n(ξ ), ξ ) = s2n(ξ )

(
F�

D

)n

. (52)

In the following sections structure functions will be computed using pertur-
bation theory around ξ equal zero. It is useful to observe that the small ξ expansion
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of the Mellin transform generates a Laurent series in z. The residues of the ex-
pansion have simple relations with the expansion in powers of ξ of the scaling
exponent:

d

dξ
ln

{
S̃2n(x, L; z + 2n)Lnξ

} = σ ′
2n(0)

z
+ O(z0, ξ 0)

+ ξ

[
(σ ′

2n)2(0)

z2
+ σ ′′

2n(0)

z
+ O(z0)

]
+ O(ξ 2). (53)

Analogous relations hold true to all orders in ξ and also for anisotropic forcing.
Thus, the Mellin transform permits to extract, systematically at any order in
ξ , zero mode contributions. Furthermore, as it will be seen below, taking the
Mellin transform of the Feynman diagrams generated by the Martin-Siggia-Rose
formulation(41) of the Kraichnan model greatly simplifies the explicit evaluation
of the corresponding integrals. The fact is well known in field theory as the Mellin
transform has the effect to map a theory with massive propagators into a massless
one. (48,59)

7. MARTIN-SIGGIA-ROSE FORMALISM

The perturbative analysis of the zero modes of the inertial operators M�
2n

in the parameter ξ is based on the fact that the velocity structure function (22)
becomes constant as ξ tends to zero and the operators become Laplacians. It
can then be checked that the solutions of the Hopf equations are correlation
functions of a Gaussian field θ . For small ξ the distribution of θ should be given
by a perturbation of this Gaussian. It is straightforward to derive a perturbation
expansion from the Ito stochastic differential Eq. (25).

For this, let us observe that the solution of (25) can be written as

θ (x, t) =
∫

ddy
(x, t |y, t0)θ (y, t0) +
∫ t

t0

ds

∫
ddy
(x, t |y, s) f (y, s) (54)

with R solution of the stochastic differential equation
(
∂t − �

2
∂2

x

)

 = −v · ∂x
 (55)

with R(x, t |y, t) = δ(d)(x − y) and the product is defined with Ito convention. This
equation can be solved as a series in multiple stochastic integrals


(t |s) =
∞∑
0

∫ t1

s
. . .

∫ t

tn

R(t |tn)v(tn)dtn · ∂ R(tn|tn−1) . . . v(t1)dt1 · ∂ R(t1|s)

(56)
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which converges in L
2 of the probability space of v. (39) Here R is the fundamental

solution to the heat equation

R(x, t |x′, t ′) =
∫

dd p

(2π )d
eıp·(x−x′)− �

2 p2(t−t ′). (57)

Inserting (56) to (54) and averaging over v and f leads to an expansion of the
correlation functions in terms of integrals involving R and the covariances of v
and f .

A convenient way to generate this series is provided by the so called Martin-
Siggia-Rose (MSR) formalism (see Refs. 15, 51, 59, and references therein). It
provides a graphical representation of the perturbation theory analogous to the
Feynman rules of quantum field theory.

The MSR formalism is derived by introducing the generating function

Z(j, j̄ ) =≺
∫

D[θ ]e〈j,θ〉δ(∂tθ + v · ∂xθ − �

2
∂2

x θ − f − ıj̄ ) �v, f (58)

where

〈j, θ〉 =
∫ ∞

−∞
dt

∫
dd xjθ (59)

and ≺ • �v, f denotes the average with respect to the velocity and forcing fields.
By introducing of an auxiliary “ghost” field θ̄ the MSR functional becomes

Z(j, j̄ ) =≺
∫

D[θ θ̄]e〈j,θ〉+〈θ̄ ,j̄ 〉−A � f,v (60)

with

A = −ı

〈
θ̄ ,

(
∂t + v · ∂ − �∂2

2

)
θ

〉
− ı〈θ̄ , f 〉. (61)

Inspection of (58) evinces that functional derivatives of Z with respect to
the source fields j, j̄ evaluated in the origin generate averages of products
of the scalar field θ and of its response to a variation of the force field. In-
verting the order of integration and averaging over the velocity and forcing fields
leads to

Z(j, j̄ ) =≺ e−A1(θ,θ̄ )− 1
2 〈θ̄ ,F θ̄〉+〈j,θ〉+〈θ̄ ,j̄ 〉 �G (62)

where

A1(θ, θ̄ ) = 1

2
〈θ̄∂αθ, Dαβ θ̄∂βθ〉 (63)

and the average is with respect the Gaussian “measure” with covariance given by

≺ θ (x, t)θ (x′, t ′) �G =
∫

dd p

(2π )d

eıp·(x−x′)− �
2 p2|t−t ′|

�p2
F(p) (64)
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and

≺ θ (x, t)θ̄ (x′, t ′) �G = ıH0(t − t ′)R(x, t |x ′, t ′). (65)

Equation (65) defines the response function of the “free”-theory which is obtained
by setting to zero the velocity field in the Ito representation of (1). It involves the
“Ito-Heaviside function”

H0(t) =
{

1 t > 0
0 t ≤ 0

(66)

which insures that equal time contractions in (63) will not occur as follows from
the Ito convention used for the stochastic integrals in (56) . The generating function
satisfies the normalization

Z(0, 0) = 1. (67)

The perturbation expansion for Z(j, j̄ ) is obtained by expanding e−A1 in
powers of A1 and expressing the resulting expectations of θ , θ̄ in graphical terms
as explained in Sec. 8. Before going to that let us make two comments concerning
the infrared cutoffs and the small parameter in the expansion.

The free response function (65) depends on the eddy diffusivity (17) which
diverges as the infrared cutoff m of the velocity field tends to zero. Thus this
limit cannot be taken directly in (62). In Sec. 4 the properties of equal time scalar
correlations were discussed in the case when m = 0. This limit can be taken in
the MSR formalism only for equal time correlation and structure functions. In
particular it can be shown(45) that order by order in perturbation theory, if the
integral scale of the forcing L F is kept fixed, the limit for m tending to zero exists
and leads to the scaling predictions of Ref. 10.

On the other hand, in the MSR formalism it is natural to study the opposite
limit when the integral scale of the velocity field m−1 is smaller than that of
the forcing. As argued in Sec. 6, anomalous scaling of the structure functions is
a consequence of the existence of homogeneous zero modes of Eq. (38) where
the infrared cutoffs don’t occur. Thus, it is plausible that the scaling exponents
don’t depend on the order in which the infrared cutoffs are removed. It would be
interesting to spell this out more explicitly. In what follows we will keep m fixed
and study the m F → 0 limit (m F ≡ L−1

F ).
Finally let us comment on the small parameter of the expansion. In Sec. 3

it was shown that the spatial part of the velocity covariance vanishes almost
everywhere (i.e. at x �= 0) as ξ → 0 whilst being bounded from above by the eddy
diffusivity ��. Thus apart from the constant mode the (63) can be viewed as a
small perturbation in the limit ξ tending to zero.
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8. SMALL ξ EXPANSION

The general features of the small ξ expansion can be summarized as follows.
The coefficients of the expansion are determined by integrals symbolically repre-
sented by Feynman diagrams. The basic ingredients of the Feynman diagrams are
the free scalar correlation (also referred to as θ − θ -line) (64) and the free response
function (θ − θ̄ -line) (65) together with the velocity correlation (v − v-line) (4).
They have the graphical

≺ θ (x, t)θ (x′, t ′) �G = (68a)

≺ θ (x, t)θ̄(x′, t ′) �G = (68b)

≺ vα(x, t)vβ(x′, t ′) � = (68c)

where end-line dots represent external points. In order to exhibit the expansion
parameter, Feynman diagrams are constructed by connecting free response and
correlations lines through the O(ξ 0) part of the interaction vertex

AI = 1

ξ
A1 = . (69)

The bars transversal to scalar lines in (69) represent spatial derivatives. Finally, all
contributions are reordered in powers of the Holder exponent of the velocity field
by expanding the residual ξ dependence of the interaction.

It is worth stressing that this perturbation series is ultraviolet finite i.e. the
resulting integrals have a well defined limit as the ultra-violet cut-off M tends to
infinity. Singular behavior is instead exhibited in the limit of infinite integral scale,
mtending to zero.

Structure functions are obtained by applying the finite increment operator
(46) to the perturbative expressions of equal time scalar correlation functions.
This operation removes order by order in perturbation theory all terms propor-
tional to powers of the integral scale otherwise present for dimensional reasons
in the correlation functions. The resulting perturbative expansion of structure
functions contains only expressions exhibiting logarithmic divergences in the
infra-red.

In Sec. 6 it was argued that S2n is in the inertial range a homogeneous
function of the spatial separation of degree ζ2n determined by the unique irre-
ducible zero-mode of the Hopf equation of order 2n. According to (53) ζ2n can
be straightforwardly evaluated order by order in ξ by taking the Mellin transform
of the perturbative expression of S2n . Working under these assumptions, in the
following two subsections the calculation of 2n is outlined for the first two orders
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in ξ . For simplicity we set M = ∞ in the calculation. More details are deferred to
appendices C and D.

8.1. Zeroth Order Approximation

The zeroth order of the perturbative expansion corresponds to neglecting
the interaction term (63) in (62). In order to simplify the notation we keep the
explicit non perturbative ξ dependence (17) in the eddy diffusivity ��. This trivial
ξ dependence can be always expanded a posteriori to check on the decoupling of
the scaling exponents into the part predicted by canonical dimensional analysis
and a part associated to self-similarity breaking in the inertial range.

The second order structure function of the Gaussian theory is obtained from
(64) and (2). In the limit L F → ∞ we get

S (0)
2 (x) = lim

L F ↑∞
lim
κ↓0

2
∫

dd p

(2π )d

1 − eıp·x

Dp2
Ld

F F̌(L F P ) = 2

D

∫
dd p

(2π )d
(p̂ · x)2 F̌(p).

(70)
In particular, if the forcing correlation is isotropic we get

S (0)
2 (x) = x2 F�

d D
. (71)

Structure functions of higher order are given in the Gaussian limit as

S (0)
2n (x) = (2n)!

2nn!

[
S (0)

2 (x)
]n

(72)

If the forcing is anisotropic, scaling properties of the structure functions are
identified by expanding them in a functional basis invariant under rotations. In d-
dimensions, this scope is achieved by resorting to an expansion in hyper-spherical
harmonics. (54) Under rather general conditions, the generic Gaussian structure
function takes the form

S (0)
2n (x) =

[
x2 F�

d D

]n ∑
j

K j Y j0(x̂) + O
(
L−2

f

)
(73)

with K j some non-universal constants depending on the forcing.

8.2. First Order Approximation

To first order in ξ the structure functions require the evaluation of the diagrams

V(1;2) = (74)
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and

V(1;4) = . (75)

In (74), (75) the increment operator is given by Eq. (46). As L F → ∞, momenta
flowing along θ − θ lines tend to zero. In such a limit the two diagrams can be
recast in the form

V (0)
(1;2) = V (0)α

(1;4)α∂2S (0)
2 (76a)

V (0)
(1;4) = V (0)αβ

(1;4)

(
∂αS (0)

2

) (
∂βS (0)

2

)
(76b)

using the general notation

V (n)•
• := dn

dξ n

∣∣∣∣
ξ=0

V•
• (77)

to count the number of derivatives with respect to ξ of a diagram and

Vαβ

(1;4) = = 2D0mξ

D

∫
dd p

(2π )d

1 − eıp·x

p2

�αβ(p̂)

pd+ξ
χ[m,∞](p). (78)

In (78) the convention is adopted to denote with truncated scalar correlation lines
in the diagrammatic representation the absence of momentum transfer along those
lines. The factor two in (78) stems from the action of the finite increment operator
Ix on the diagram. From (78) it is readily verified the expected the ultra-violet
convergence of V (0)αβ

(1;4) as well as its logarithmic divergence in the infra-red.
The sum of (76a) and (76b) weighted by combinatorial factors yields the

inertial range asymptotics of structure functions

S2n(x, m) = (2n)!

2nn!

{[
S (0)

2 (x)
]n + nξ

2

[
S (0)

2 (x)
]n−1V (0)αβ

(1;4) ∂α∂βS (0)
2 (x)

+ ξn(n − 1)

2

[
S (0)

2 (x)
]n−2V (0)αβ

(1;4)

[
∂αS (0)

2 (x)
][

∂βS (0)
2 (x)

]}

+O(ξ 2, L−2
F ). (79)

Some straightforward algebra permits to recast the result in a more compact form

S2n(x; m) =
{

1 + ξ

2
V (0)αβ

(1;4) ∂α∂β

}
S (0)

2n (x) + O(ξ 2, L−2
F ). (80)

The Mellin transform defined as in (50) acts on the perturbative expression of
structure function as

[ ˜S2n − S (0)
2n

]
(x, m; z + 2n) = ξ

2
V (0)αβ

(1;4) (z + 2)∂α∂βS (0)
2n (x) + O(ξ 2, L−2

F ) (81)
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where

V (0)αβ

(1;4) (z + 2) = 2D0

D

∫ ∞

0

dw

w

1

wz+2

∫
p≥m

dd p

(2π )d

1 − eıwp·x

p2

�αβ(p̂)

pd
. (82)

The explicit evaluation of this integral is performed in appendix C.
The relations

x2∂2(x2nY jl) = [2n(2n + d − 2) − j( j + d − 2)]x2nY jl

xβ · ∂β(x2nY jl) = 2nx2nY jl (83)

together with (53) yield the first order result for the leading scaling exponents for
each angular component of the structure functions:

ζ2n, j = 2n −
[

n(d + 2n)

d + 2
− (d + 1) j(d + j − 2)

2(d + 2)(d − 1)

]
ξ + O(ξ 2). (84)

The anomalous part of the scaling exponent is identified by expanding the ξ

dependence of the free structure function upon the eddy diffusivity ��:

ρ2n, j =
[

2n(n − 1)

d + 2
− (d + 1) j(d + j − 2)

2(d + 2)(d − 1)

]
ξ + O(ξ 2). (85)

The result is in agreement with those given in Refs. 5, 7, 8, 10. Note that the
isotropic exponent j = 0 dominates inertial range scaling.

8.3. Second Order Approximation

To second order in ξ and as L F → ∞ we obtain the representation

S2n(x; m) =
{

1 + ξ

2
V (0)αβ

(1;4) ∂α∂β + ξ 2

2

[
V (1)αβ

(1;4) ∂α∂β + V (0)αβ

(2;4) ∂α∂β

]}
S (0)

2n (x)

+ ξ 2

{
V (0)αβµ

(2;6) ∂α∂β∂µ + 1

8
V (0)αβµν

(2;8) ∂α∂β∂µ∂ν

}
S (0)

2n (x)

+ O(ξ 3, L−2
F ). (86)

The expansion coefficients in (86) require the evaluation of two new diagrams

Vαβ

(2;4) =

= 2D2
0

D2

∫
q≥m
p≥m

ddpddq

(2π )2d

1 − cos[(p + q) · x]

(q + p)2

qµqν

q2

�µν(p̂)�αβ(q̂)

pd+ξ qd+ξ
(87)
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Vαβ;µ
(2;6) =

= −ıD2
0

D2

∫
q≥m
p≥m

ddpddp

(2π )2d

(eıq·x − 1)(e−ı(q+p)·x − 1)(eıp·x − 1)

(q2 + q · p + p2)q2

qν�
µν(p̂)�αβ(q̂)

pd+ξ qd+ξ
.

(88)

The diagram (88) is invariant under exchange of the indices α, β but not under
exchange of µ with α or β. The fact is emphasized by the introduction of a
semicolon separating the indices. In (86) index-contractions select only the fully
index-symmetric part of (88). This is the reason why the semicolons between tensor
indices appearing in (88) do not appear in (86).

The third new coefficient appearing in (86) for L F tending to infinity is

Vαβ;µν

(2;8) = = Vαβ

(1;4)V
µν

(1;4) (89)

Thus, the absence of momentum flow across inner scalar correlation lines re-
duces the evaluation of V (0)αβ;µν

(2;8) and V (1)αβ

(1;4) to the first order integral computed in
appendix C.

As expected by dimensional considerations, the integrals are convergent for
large momentum values and logarithmic for small momenta.

The Mellin transform (50) of (86) acts on the individual Feynman diagrams
as

[ ˜S2n − S (0)
2n ](x, m; z + 2n)

= 1
2

{
∂Ṽ (0)αβ

(1;4) (z + 2) + ξ 2
[
Ṽ (1)αβ

(1;4) (z + 2) + Ṽ (0)αβ

(2;4) (z + 2)
]}

∂α∂βS (0)
2n (x)

+ ξ 2
{
Ṽ (0)αβµ

(2;6) (z + 3)∂α∂β∂µ + 1
8 (V (0)α̃β

(1;4) V
(0)µν

(1;4) )(z + 4)∂α∂β∂µ∂ν

}
S (0)

2n (x)

+ O
(
ξ 3, L−2

F

)
(90)

where

Ṽ (0)αβ

(2;4) (z + 2) =
∫ ∞

0

dw

w

2D2
0

D2wz+2

∫
q≥m
p≥m

ddpddq

(2π )2d

1 − eıwp·x

(q + p)2

qµqν

q2

�µν(p̂)�αβ(q̂)

pdqd

(91)
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V (0)αβ;µ
(2;6) (z + 3) =

∞∫
0

dw

w

−ıD2
0

D2wz+3

×
∫

q≥m
p≥m

ddqddp

(2π )2d

(eıwq·x − 1)(e−ıw(q+p)·x − 1)(eıwp·x − 1)

(q2 + q · p + p2)q2

qν�
µν(p̂)�αβ(q̂)

pdqd
.

(92)
Guidelines for the evaluation and explicit expressions of the Mellin transform of
the diagrams are deferred to appendix D.

Representing (86) in terms of hyperspherical harmonics (54) yields the
scaling exponents of the structure function for each value of the angular mo-
mentum j :

ζ2n, j = 2n −
[

n(d + 2n)

d + 2
− (d + 1) j(d + j − 2)

2(d + 2)(d − 1)

]
ξ + (d + 1)

{
4(16 − 5d)n2

(d − 1)(d + 2)3(d + 4)

+ 4[4 − ( j − 2) j + d2(5 + 2 j) + d j(2 j − 5) − 9d]n − 48(d − 1)n3 − 9d j(d + j − 2)

(d − 1)2(2 + d)3(4 + d)

+ (n − 1)Hyp21

(
1, 1, 2 + d

2
,

1

4

) [
3d(6 + d)n

(2 + d)3(4 + d)(1 + d)
+ 6n

n(4 + d(7 + d)) − 4

(d2 − 1)(2 + d)3(4 + d)

− 3(d3 + 6d2 + d − 4) j(d + j − 2)

2(d − 1)2(2 + d)3(4 + d)(d + 1)

]}
ξ 2 + O(ξ 3) (93)

with Hyp21 denotes the Gauss hypergeometric series (1):

Hyp21(a, b, c, x) = �(c)

�(a)�(b)

∞∑
n=0

�(a + n)�(b + n)xn

�(c + n)�(n + 1)
. (94)

The result is in agreement with those of Refs. 2, 3, 5 derived using the ultra-violet
renormalization group. From the computational point of view the Mellin transform
applied here to the perturbative expansion does not provide the simplest scheme
to derive the scaling exponents. It is conceptually important because it shows how
to relate zero modes of the Hopf equations to the more general diagrammatic
expansion.

For completeness sake, it is worth noticing that gluing together truncated
scalar correlation lines of (87), (88) and (89) permits for any given structure func-
tion to reconstruct the diagrammatic expression of the non-universal contributions
vanishing in the limit L F tending to infinity. For example, the full diagrammatic
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expression of the fourth order structure function is

S4(x; m) = + 6

(
ξIx|ξ=0 + ξ 2Ix

d

dξ

∣∣∣∣
ξ=0

)

+ 3ξ 2Ix|ξ=0 + 3ξ 2Ix|ξ=0

+ 12

(
ξIx|ξ=0 + ξ 2Ix

d

dξ

∣∣∣∣
ξ=0

)
+ 6ξ 2Ix|ξ=0

+ 12ξ 2Ix|ξ=0 + 24ξ 2Ix|ξ=0

+ 24ξ 2Ix|ξ=0 + 24ξ 2Ix|ξ=0 + 0)(ξ 3).

(95)

9. GRADIENT CORRELATIONS AND THE ROLE

OF THE DISSIPATIVE SCALE

From the short distance behavior of the structure functions of the scalar for
zero molecular diffusivity we infer that the the field θ (x) will not be differentiable:
it is only Holder continuous with exponent 1 − O(ξ ). Hence correlation functions
of the gradients of θ should blow up as the dissipative scale is taken to zero.

The scaling Ansatz (47) imposes the existence of a precise relation between
the rate of these divergences and the scaling exponents of the structure functions.
It is convenient to illustrate the argument in the fully isotropic case, the general-
ization to anisotropy being straightforward. Using the hypothesis of inertial range
universality, L and � will represent respectively the integral and dissipative scale
of the scalar field disregarding of the mechanism responsible for their onset.

Radial gradient correlations at equal points and structure functions are related
by the incremental ratio

G2n(L , �) := ≺ [
xα

x ∂αθ (x)
]2n �= lim

x↓0
≺

[
θ(x)−θ(0)

x

]2n
�.

= lim
x↓0

x−2n S2n(x, �, L)
(96)

By scaling

S2n(x, �, L) = x2n�−ξncn(L/�).
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Supposing

cn(L/�) ∼ (L/�)αn (97)

and matching at x = � with the scaling Ansatz (47) we infer

G2n(L , �) ∝ �−nξ

(
L

�

)ρ2n

. (98)

As the dissipative scale tends to zero gradient correlations are seen to blow up at
equal points as a power law with exponent determined by the anomalous scaling
exponent of the structure functions. Thus (98) relates the existence of anomalous
scaling and the dissipative anomaly in the energy flux of the scalar field. Taking
the angular average of (98) relates it to the dissipative anomaly

G2n(L , �) =≺ [(∂αθ∂αθ )(0, t)]n �
∫

d�d

�d
cos2n

� (x, ∂θ ) (99)

where the symbol � means that the argument of the cosine is the angle between x
and the gradient of θ . The explicit expression of the angular average is given by

∫
d�d

�d
cos2n

� (x, ∂θ ) = �(2n + 1)�( d
2 )

4n�(n + 1)�( d
2 + n)

. (100)

9.1. Perturbative Expansion for Radial Gradient Correlations

Equation (98) suggests that it should be possible to determine the scaling
exponents from a perturbative expansion of radial gradient correlations rather
than of the structure functions. (8) By dimensional analysis a similar expansion
is seen to generate Feynman diagrams logarithmic at all momentum scales. The
evaluation of the associated integrals is therefore greatly simplified.

The identity

≺ (xα∂αθ )2n � = x2n ≺ (x̂α∂αθ )2n �= x2nG2n (101)

permits to derive the perturbative expansion of radial gradients from

≺ (xα∂αθ )2n �

=
{

1 + ξ

2
U (0)αβ

(1;4) ∂α∂β + ξ 2

2

[
U (1)αβ

(1;4) ∂α∂β + U (0)αβ

(2;4) ∂α∂β

]}
≺ (xα∂αθ )2n � G

+ ξ 2

{
U (0)αβµ

(2;6) ∂α∂β∂µ + 1

8
U (0)αβ

(1;4) U
(0)µν

(1;4) ∂α∂β∂µ∂ν

}
≺ (xα∂αθ )2n �G +O(ξ 3)

(102)
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where ≺ • �G denotes averaging with respect to the Gaussian measure. The
argument of the logarithms appearing in the expansion is now the ratio between
the integral and dissipative scales of the velocity field. As in Sec. 8 the result is
written by keeping fixed the eddy diffusivity (17) and in the limit of integral scale
of the forcing L F tending to infinity.

The U-coefficients in (102) are related through the general definition

U (n)•
• = dn

dξ n

∣∣∣∣
ξ=0

U•
• (103)

to the evaluation of the Feynman diagrams

Uαβ

(1;4) = = D0mξ

D

∫
M p m

dd p

(2π )d

(p · x)2

p2

�αβ(p̂)

pd+ξ

= (d + 1)x2

(d − 1)(d + 2)ξ

[
1 −

(
M

m

)−ξ
]
T αβ(x̂, 2) (104)

and

Uαβ

(2;4) =

= D2
0

D2

∫
M≥q≥m
M≥p≥m

dd pddq

(2π )2d

[(p + q) · x]2

(q + p)2

qµqν

q2

�µν(p̂)�αβ(q̂)

pd+ξ qd+ξ
(105)

Uαβ

2;6 =

= D2
0

D2

∫
M≥q≥m
M≥p≥m

ddqdd p

(2π )2d

(q · x)[(q + p) · x](p · x)

(q2 + q · p+p2)q2

qν�
µν(p̂)�αβ(q̂)

pd+ξ qd+ξ
. (106)

The evaluation of the last coefficient appearing in (102) does not require the
evaluation of further integrals

Uαβ;µν

(2;8) = Uαβ

(1;4)U
µν

(1;4) (107)
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As in the case of structure function only the index-symmetric part of the diagrams
above matters in the evaluation of (102) whence the omission of the semicolon
between indices.

The Mellin transform proves again useful in extracting logarithms from (102).
The transform is well defined since the condition M > m provides an infra-red
cut-off:

G̃2n(m, M ; z) :=
∫ ∞

m

dw

w

G2n(Mw, m)

wz
∝ mnξ

z − nξ − ρ2n

(
M

m

)z

. (108)

Evaluated at m equal one or equivalently by keeping �� constant in the ξ -expansion,
(108) permits to apply the formula (53) to the computation of the scaling exponent.
The explicit expressions of the Mellin transform of the U-coefficients together
with some details about their computation are given appendix F. Straightforward
algebra then shows that from (102) the O(ξ 2) result (93) for the anomalous scaling
exponent is recovered. Finally it is readily verified that (93) can be related to the
perturbative expansion of the structure function in the limit

G2n(m, M) = ≺ (xα∂αθ )2n �
x2n

= lim
x↓0

S2n(x ; m−1, M−1)

x2n
. (109)

Namely, the U-coefficients in (93) coincide with leading order of the Taylor ex-
pansion in the spatial increments of the V-coefficients in (86).

10. RENORMALIZATION GROUP METHODS AND THE VALIDATION

OF SCALING ANSÄTZE

The zero mode analysis leading to the scaling Ansatz (47) justifies the expo-
nentiation of the logarithms encountered in the perturbative expansion in powers
of ξ . However, the concept of a zero mode is based on the existence of a closed
hierarchy of Hopf equations for equal time correlations. This is a very special
feature of the Kraichnan model which is not present in more realistic models of
fluid turbulence. It is therefore useful to look for a validation of scaling directly in
framework of the MSR formalism.

Such a validation is well known in the statistical field theory of dynamical and
critical phenomena namely the Wilson formulation of the renormalization group
(see for example Refs. 56, 57) and by its subsequent refinements (comprehensive
presentations can be found for example in the monographs (14,19,40,43,51,59)).

In the theory of critical phenomena scaling of correlation functions occurs
at large spatial scales. They exhibit at the critical point a power law fall-off which
is insensitive to the short distance details of the system. The universality of the
long distance or infra-red behavior with respect to the ultra-violet is formalized by
direct or ultra-violet renormalization. In the coming subsection the main idea will
be recalled with the aim of applying it to the Kraichnan model where universality
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is expected to emerge from the renormalization of infra-red rather than ultra-violet
degrees of freedom once the dissipative scale has been set to zero.

10.1. Wilson Direct (Ultra-Violet) Renormalization Group

We start by briefly recalling the Wilson renormalization group as applied
to the study of correlation functions at large spatial scales. A field theory or a
spin system is specified by an action functional A (or Hamiltonian) depending on
fields, spins and the like here collectively denoted by φ where φ is a random field
φ(x) with probability distribution formally given by

P[φ] ∝ e−A(φ)D[φ]. (110)

Local observables O(x) are functions of φ and its derivatives at the point x . In
analogy to quantum field theory, they are often called operators.

At the critical point correlation functions of local operators exhibit scaling

≺ O(x)O(y) � |x−y|↑∞∼ |x − y|2ηO (111)

with ηO the scaling dimension of the operator O. Scaling becomes exact in the
scaling limit i.e. for the random fields

O�(x) = lim
λ↓0

λ−ηOO(λ−1x) (112)

whose two point function is

≺ O�(x)O�(y) �∝ |x − y|−2ηO . (113)

Thus, the scaling operator O�(x) describes the long distance behavior of O(x).
In statistical mechanics the fields φ and hence O have an UV cutoff (e.g. the

lattice spacing). O� has no such cutoff. Wilson’s idea was to combine the scaling
limit with a coarse graining operation so that the fields retain a fixed UV cutoff
and the operation, called Renormalization Group, can be viewed as a mapping
on probability distributions (or actions). This leads to a theory of the scaling
dimensions ηO.

In the simplest setup the fields φ have a cutoff in momentum space e.g. defined
by having Fourier transform with support for radial values of the momentum in
[0, M]. Let ϕ consist of the Fourier components of φ in the range [0, λM] and δφ

the ones on [λM, M]:

φ(x) = ϕ(x) + δφ(x). (114)

Define a rescaling operation

O(λ)(x) := λ−ηOO(λ−1x) (115)
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and let

φ′(x) = ϕ(λ)(x) (116)

so φ′ has momenta on [0, M]. Then we have the decomposition

φ(x) = φ′
(1/λ)(x) + δφ(x). (117)

The expectation of O can be rewritten as

≺ O � =
∫
D[φ]O(φ)e−A(φ)∫

D[φ]e−A(φ)
=

∫
D[ϕ]D[δφ]O(φ′

(1/λ) + δφ)e−A(φ′
(1/λ)+δφ)

∫
D[ϕ]D[δφ]e−A(φ′

(1/λ)+δφ)
.

(118)
Integrating over δφ this becomes

≺ O � =
∫

D[φ′](LλO)(φ′)e−(RλA)(φ′)∫
D[φ′]e−(RλA)(φ′) (119)

where we defined the coarse-grained or renormalized operator

(LλO)(φ′) :=
∫
D[δφ]O(φ′

(1/λ) + δφ)e−A(φ′
(1/λ)+δφ)

∫
D[δφ]e−A(φ′

(1/λ)+δφ)
(120)

and the renormalized action functional

(RλA)(φ′) = − ln
∫

D[δφ]e−A(φ′
(1/λ)+δφ). (121)

These functionals depend on the field φ which has momentum support on the
original range [0, M]. Rλ is called the renormalization group transformation and
clearly Lλ is the derivative DRλ of Rλ at A i.e. the linearized RG transformation.

The renormalization group transformation Rλ satisfies the relation

Rλ1Rλ2 = Rλ1λ2 (122)

and defines a semi-group acting on the space of field functionals.
The physical interpretation of RG is that by averaging over the ultra-violet

degrees of freedom stored in δφ and rescaling the resulting theory coincides in the
long distances with the original theory and differs only in irrelevant short distance
properties. The limit λ tending to zero should then describe universal long distance
properties common to many action functionals A. It plays the role of the scaling
limit in the Wilson formulation. The simplest limit is a fixed point

A� = RλA� (123)

and given an action A there is at most one choice of ηφ of the scaling dimension of
the basic fields such that the renormalization group flow of the action A converges
to a fixed point.
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Scaling fields in the Wilson theory are local eigenoperators of the linearized
RG L∗

λ at the fixed point A�:

L�
λ(x) = ληOO(λx). (124)

These may often be found as follows. Suppose the limits

lim
λ↓0

RλA = A� (125)

and

lim
λ↓0

(LλO)(λ) = O�. (126)

exist. Then O� satisfies Eq. (124).
We formulated the UV renormalization as the search of universal long dis-

tance properties of a theory with fixed UV cutoff. In field theory one is also
interested in the continuum limit, i.e. the removal of the UV cutoff, M → ∞.
Thus one considers a one parameter family of actions AM with UV cutoff M and
possibly depending parametrically on M (through bare mass, coupling constant,
wave function renormalization etc). One then fixes some momentum scale m̄ and
splits the field as

φ(x) = ϕ(x) + δφ(x) (127)

where ϕ has UV cutoff m̄ and the fluctuation part δφ momenta between m̄ and M .
Call the result after integrating over δφ by e−AM

m̄ (ϕ). The limit

lim
M→∞

AM
m̄ = Am̄ (128)

is the effective action of scale m̄. This problem of continuum limit is obviously
related to the previous one by trivial rescalings. For the limits to exist, AM (after
rescaling to say unit cutoff) has to approach the stable manifold of a fixed point
A� of the Wilson RG as M → ∞ and then Am̄ (after rescaling again) will lie on
the unstable manifold of A�.

The Wilson idea can be applied with small changes to the time dependent
correlation functions of solutions of stochastic (partial) differential equations.
In that case the fields φ(x, t) depend also on time and P is given by the MSR
construction (and is not positive). The coarse graining takes place in space only
whereas in time one scales. We write

O(λ)(x, t) := λ−ηOO(λ−1x, ληt t) (129)

where the time exponent ηt has to be determined. In the simplest diffusion process
ηt = −2.
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10.2. Infra-red Renormalization

In the theory of critical phenomena the concept of universality refers to the
independence of the long distance properties of correlation functions on the short
distance details of the Hamiltonian which in the RG language translates to the fact
that all the Hamiltonians in the domain of attraction of a given fixed point have
the same critical exponents.

In turbulence there is an inversion of scales. There are many mechanisms
which may stir the onset of turbulence at large scales and universality refers
to the independence of the inertial range scaling on these long distance details
of the forcing. It has therefore been conjectured in the literature (see Refs. 23,
32 for a general discussion and further references) that it should be possible to
prove the irrelevance of infra-red degrees of freedom for inertial range scaling
through the use of an inverse renormalization group. The adjective “inverse”
must be understood in the sense that the renormalization group is constructed
by averaging over fluctuations δφ with support in the infra red. More precisely,
Wilson’s recursion scheme is implemented along the same lines of the direct one
encoded in formulae (117)–(123) but with the following differences

(i) The basic field φ is supported for radial values of the momentum in [m,∞]
with m the infra-red cut-off. It is decomposed into a scaling field φ′

(1/λ)
with support in [λm,∞] and fluctuating field δφ with support in [m, λm].
In view of the inversion, the asymptotic regime is reached now for large
values of λ.

(ii) If the (inversely) renormalized actions Aλ converge to a fixed point A� as
λ tends to infinity thenA� describes the universal short distance properties
of the theory.

In the following section the idea of inverse renormalization will be applied
to the Kraichnan model to provide a validation of scaling complementary to the
zero modes picture of Sec. 5.

11. INVERSE (INFRA-RED) RENORMALIZATION GROUP

FOR THE KRAICHNAN MODEL

The idea to investigate the Kraichnan model by implementing a Wilson’s
infra-red recursion scheme was put forward first in Refs. 31, 32. There, it was
argued that the Kraichnan model with a quasi-Lagrangian velocity field(12) had a
inverse RG fixed point and scaling fields with dimensions given by the exponents
found from the zero mode analysis of structure functions.

The purpose here it to carry out such an analysis in more detail to the canonical
Eulerian representation of the Kraichnan model.
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11.1. General Settings for Inverse Renormalization

It was observed in Refs. 31, 32 that one should consider the IRG transforma-
tion in the space of MSR actions without the forcing which should be treated as
the correlation functions. The basic fields are

φ = (θ, θ̄ , v). (130)

The starting point is the measure

e−A(φ)D[φ] = e−Av (θ,θ̄ ,v)dµR(θ, θ̄ )dµD(v) (131)

where

Av(θ, θ̄ , v) := −ı〈θ̄ , vα∂αθ〉 = (132)

and µD the Gaussian measure with covariance D and µR is the Gaussian “measure”
with “covariance" given by the free response function (57). To keep to the RG
formalism discussed in Sec. 10 we introduce to R the same infrared cutoff m as
in the velocity covariance D. This is only for notational convenience as can easily
be checked below.

The IRG transformation is defined by decomposing the fields as follows. The
scaling exponents of time and the velocity are tied together by Galilean invariance,
i.e. they are chosen so as to preserve the material derivative

∇t = ∂t + vα∂α (133)

under scaling. This means that

ηv = −1 − ηt . (134)

The velocity field is decomposed into a scaling and fluctuating part

v = v′
(1/λ) + δv. (135)

It is readily seen that v′ is again Gaussian with covariance

≺ v′α(x, t)v′β (y, s) � = λ−2ηv−ηt −ξ δ(t − s)Dαβ(x, m) (136)

whereas the covariance of the velocity fluctuation denoted by

δvα(x, t)δvβ(y, s) := δ(t − s)δDαβ(x − y, m) (137)

is given as

δDαβ(x, m) = D0ξ

∫
dd p

(2π )d

eıp·x

pd+ξ
�αβ(p̂)χ[m,λm](p). (138)

Similar decomposition of the fields θ and θ̄

θ = θ ′
(1/λ) + δθ (139a)
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θ̄ = θ̄ ′
(1/λ) + δθ̄ (139b)

leads to

≺ θ ′(x, t)θ̄ ′(y, s) �= λ−ηθ−ηθ̄ +d R(x − y, t − s, λ2+ηt ��) ≡ R′(x − x, t − s).
(140)

Thus we will fix

ηθ + ηθ̄ = d. (141)

The fluctuation covariance is given by

δR(x − y, t − s) ≡ δθ (x, t)δθ̄ (y, s)

= ıH0(t − s)
∫

dd p

(2π )d
eıp·(x−y)− ��

2 p2(t−s)χ[m,λm](p). (142)

The IRG transformation of the measure (131) is given by

e−RλA(φ)D[φ′] = e−A′
v (θ ′,θ̄ ′,v′)dµR′ (θ ′, θ̄ ′)dµD′ (v′) (143)

where

A′
v(θ ′, θ̄ ′, v′) = − log

∫
e−Av (θ,θ̄ ,v)dµδR(δθ, δθ̄ )dµδD(δv) (144)

and θ, θ̄ and v have been decomposed according to (139a), (139b) and (135).

11.2. Infra-red Renormalization Group Flow of the Action

Let us do first the δv integral in (144)-

e−A′
v (φ′) =

∫
eı〈θ̄ ,v′α∂αθ〉− 1

2 〈θ̄∂αθ,δDαβ θ̄∂βθ〉dµδR(δθ, δθ̄ ) (145)

where

θ = θ ′
(1/λ) + δθ. (146)

The second exponent on the RHS equals at δθ = 0 = δθ̄

〈θ̄ ′
(1/λ)∂αθ ′

(1/λ), δDαβ θ̄ ′
(1/λ)∂βθ ′

(1/δ)〉 = λ2−ξ+ηt 〈θ̄ ′∂αθ ′, δDαβ

(λ)θ̄
′∂βθ ′〉. (147)

The large scale velocity is dominated by the constant mode of the velocity field

δDαβ

(λ) = (λξ − 1)��δ
αβ − δdαβ

� (x, m) + o

(
1

λ

)
(148)

where

δdαβ
� (x, m) = D0ξ

∫
ddp

(2π )d

1 − eıp·x

pd+ξ
�αβ(p̂)χ[0,m](p). (149)
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Due to the unstable constant mode of the velocity field the only scaling under
which the IRG stabilizes as λ tends to infinity is the Gaussian scaling

ηt = −2. (150)

From (136) we see that the covariance D′ then tends to zero i.e. the velocity field
disappears from the action. In that limit then

e−A′
v (φ′) = lim

λ→∞

∫
e− ��

2

∫
dt(

∫
dx θ̄ ∂αθ)2

dµδR(δθ, δθ̄ ). (151)

But ∫
dx θ̄∂αθ =

∫
dx θ̄ ′

(1/λ)∂αθ ′
(1/λ) +

∫
dxδθ̄∂αδθ (152)

due to the disjoint supports of θ̄ ′
1/λ and δθ̄ in momentum space. Thus we end up

with the fixed point (up to a constant)

A�
v = ��

2

∫
dt

(∫
dx θ̄∂αθ

)2

. (153)

The action (153) coincides with

A�
v = − ln ≺ eı〈θ̄ ,vα

� ∂αθ〉 �v� (154)

where v� is a velocity field with constant covariance

≺ vα
� (t)vβ

� (s) � = δ(t − s)��δ
αβ (155)

with �� given by (17). The only nonzero correlations of the fixed point theory are
the multiple response functions

≺
n∏

i=1

θ (xi , ti )θ̄ (yi , si ) � =
n∏

i=1

δ

δj (xi , ti )

δ

δj̄ (yi , si )

∣∣∣∣
j=j̄=0

≺ eı〈j,
H j̄ 〉 �v (156)

and thus they coincide with the velocity averages of the same response functions
in a random constant velocity field.

Using Hopf equations (27) the response functions of the Kraichnan model
with only two times are given as heat kernels

≺
n∏

i=1

θ (xi , t)θ̄ (yi , s) � = H0(t − s)eMn (t−s)(x1, . . . , xn, y1, . . . , yn) (157)

of the operators

Mn = κ

2

∑
i

∂2
xi

+ Dm−ξ

2

(∑
i

∂xi

)2

+
∑
i< j

dαβ∂xα
i
∂xβ

j
(158)
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and the multiple time ones are simple combinations of these with various n’s.
Under the scaling of space and time where ηt = −2 the dαβ will contract by L−ξ

thus explaining the fixed point.
The reason for the trivial fixed point of the IRG lies, as stressed in Refs. 31, 32,

in the constant mode of the velocity field. As we saw in Sec. 4 this mode decouples
in the stationary equal time correlators i.e. the second term drops out from the
operators (158) when acting on translationally invariant functions. However, it
doesn’t decouple in the unequal time stationary correlators. For example, the
two-point function of the scalar is given by

≺ θ (x, t)θ (y, s) � = ≺ [
eM1(t−s)θ (x, s)

]
θ (y, s) � (159)

and the time dependence is dominated by the eddy diffusivity �� = Dm−ξ .
It is possible to modify the velocity covariance so that the zero mode decouples

also from the time evolution while the stationary state is left unchanged, (31,32) an
example being the quasi-Lagrangean velocity field. Then one may choose scaling
ηt = −2 + ξ and the IRG fixed point is less trivial. However, in both cases the
scaling properties of the fixed point action bear very little information about the
structure functions S2n . To understand their scaling we need to find the relevant
scaling fields. In the next section we show how they appear in our model of Eulerian
velocities thus bypassing the more involved quasi-Lagrangean formalism proposed
in Refs. 31, 32.

12. INFRA-RED RENORMALIZATION GROUP ANALYSIS

OF THE STRUCTURE FUNCTIONS

By definition structure functions are the averages

S2n(x) =≺ [θ (x) − θ (0)]2n [ı〈θ̄ , f 〉]2n

(2n)!
� (160)

with respect to the measure (131) and the Gaussian measure of the forcing field
f . For the renormalization group calculations it is convenient to take the forcing
covariance (2) as

≺ f̌ (p1, t1) f̌ (p2, t2) � = F�

δ(p1 − m F )

md−1
F

δ(d)(p1 + p2)δ(t − s) (161)

where m F = L−1
F . The forcing is in such a case isotropic. An example of

anisotropic forcing is

≺ f̌ (p1, t1) f̌ (p2, t2) � = F�

δ(d)(p1 − q�) + δ(d)(p1 + q�)

2
δ(d)(p1 + p2)δ(t − s)

(162)
with |q|� = m F .
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As in Secs. 8 and 9 we work under the assumption

m F

m
� 1. (163)

It should be stressed that this is for simplicity only and the conclusions of the
renormalization group analysis of the structure function hold true for an arbitrary
value of the ratio of the integral scales provided the requirement of infra-red forcing
is satisfied. (45) In the language of renormalization group this latter requirement
means that

f = δ f (164)

which obviously is true as soon as m F ∈ [0, λm]. Thus the structure functions are
given as the expectation value

S2n(x; φ) = [J (x)]2n ı2n〈δθ̄ , Fδθ̄〉n

2nn!
(165)

where F is the spatial part of the forcing correlation and using invariance under
x → −x we replaced the scalar increment by

J (x) = 1

2
(θ (x, 0) + θ (−x, 0) − 2θ (0, 0)) (166)

In the limit m F tending to zero, the structure function operator involves of
powers of

lim
m F ↓0

〈δθ̄ , Fδθ̄〉 ∝
∫ ∞

−∞
dtδ ˇ̄θ (0, t)δ ˇ̄θ (0, t) (167)

which is a field functional local in momentum space.

12.1. Scaling Field for the Structure Functions

At zeroth order in ξ the isotropic component of the renormalized structure
function has the scaling limit

lim
λ↑∞

λζ2n, j

∫
d�dY ∗

j0(x̂)(LλS2n)
(x

λ
; φ

)
=

∫
d�dY ∗

j0(x̂)S (0)
2n (x) (168)

for

ζ2n, j = 2n. (169)

12.1.1. First Order in ξ

We will work out perturbative corrections to (168) in the limit m F → 0. In
this limit there is no momentum flow along scalar correlation lines even at finite
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λ. In consequence, couplings generated by Wick contractions of scalar fields in
the interaction vertex (132) with ghost fields in the forcing vertex (167) factorize
as

〈θ̄(1/λ), v
α
(1/λ)∂αδθ〉〈δθ, Fδθ〉δJ

(x

λ

)

= 〈θ̄(1/λ), v
α
(1/λ)〉

∫
ddp

(2π )d
i pα

2 cos
(

x
λ

· p
) − 1

2p2
F̌(p) (170)

which vanishes because of parity (recall that F̌(p) ∝ δ(p) as m F → 0). At leading
order in ξ the scaling field associated to the structure function operation is given
by

lim
λ↑∞

λζ2n, j

∫
d�d Y ∗

j0(x̂)(LλS2n)
( x

λ
; φ

)

= lim
λ↑∞

∫
d�d Y ∗

j0(x̂)

{
(1 + ζ

(1)
2n,0 ln λ)S2n(x) + ξλζ

(0)
2n

d

dξ

∣∣∣∣
ξ=0

(LλS2n)
( x

λ
; φ

)}
+ O(ξ 2)

(171)
where

d

dξ

∣∣∣∣
ξ=0

(LλS2n)(x; φ)

= 1

2

(
2n

2n − 2

)
S2n−2(x)

[
δV (0)αβ

(1;4) (x, λ) + V
(0)αβ

(1;4) (x, φ(1/λ))
]

(∂α∂βS2)(x)

+ 3

(
2n

2n − 4

)
S2n−4(x)

[
δV (0)αβ

(1;4) (x, λ) + V
(0)αβ

(1;4) (x, φ(1/λ))
]

(∂αS2)(x)(∂βS2)(x)

(172)
The vertices are given by the small scale field functional

V
αβ

(1;4)

(
x, φ(1/λ)

) = J 2
(1/λ)(x)〈θ̄(1/λ), v

α
(1/λ)〉〈θ̄(1/λ), v

β

(1/λ)〉 := Ix

(173)
and the averaged value of its large scale (small momentum) counterpart

δVαβ

(1;4)(x, λ) = 2D0mξ

D

∫
ddp

(2π )d

1 − eıp·x

p2

�αβ( p̂)

pd+ξ
χ[m,λm](p)

= PλIx (174)

whilst the notation (77) is adopted for derivatives with respect to the Hölder
exponent ξ . The symbol Pλ in (174) denotes the restriction of the momentum
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support of the velocity correlation. As λ tends to infinity the diagram has the
limit

λ2δV (0)αβ

(1;4)

(x

λ
, λ

)
λ↑∞= ln λ

(d + 1)x2

(d − 1)(d + 2)
T αβ(x̂, 2) + δV (0)αβ

�(1;4)(x) (175)

Little algebra yields the final form of (171)

lim
λ↑∞

λζ2n, j

∫
d�dY ∗

j0(x̂)(LλS2n)(x; φ) =
∫

d�dY ∗
j0(x̂)S2n(x)

+ ξ

2

∫
d�dY ∗

j0(x̂)
[
δV (0)αβ

�(1;4)(x) + V
(0)αβ

(1;4) (φ)
]
∂α∂βS2n(x) + O(ξ 2) (176)

provided ζ2n, j is given by (84).

12.1.2. Second Order in ξ

The calculation of the structure function scaling field can be inferred from
the perturbation theory of Sec. 8. The field independent part of the scaling field
is given by the structure function diagrams in the presence of a fixed arbitrary
ultra-violet cutoff. The field dependent part is obtained by pruning lines in these
diagrams and replacing them with the corresponding pair of ultra-violet scaling
fields. Accordingly, up to second order accuracy in ξ , the renormalized structure
function takes the form

(LλS2n)(x; φ)

=
{

1 + ξ

2

1∑
r=0

ξ r
[
V

(r )αβ

(1;4) (x, φ(1/λ)) + δV (r )αβ

(1;4) (x, λ)
]}

∂α∂βS (0)
2n (x)

+ ξ 2

2

{
V

(0)αβ

(2;4) (x, φ(1/λ)) + δV (0)αβ

(2;4) (x, λ)
}

∂α∂βS (0)
2n (x)

+ ξ 2
{
V

(0)αβµ

(2;6) (x, φ(1/λ)) + δV (0)αβµ

(2;6) (x, λ)
}

∂α∂β∂µS (0)
2n (x)

+ξ 2

8

{
V

(0)αβµν

(2;8) (x, φ(1/λ)) + δV (0)αβµν

(2;8) (x, λ)
}

∂α∂β∂µ∂νS (0)
2n (x) + O(ξ 3, L−2

F ).

(177)

The δV•
• ’s denote the diagrams (87), (88), and (88) where velocity correlations

have momentum support in [m, λm]. Infra-red logarithmic behavior of the field
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dependent vertices is identified by considering the scaling limits

lim
λ↑∞

λ2V
αβ

(2;4)

(x

λ
, φ(1/λ)

)
= lim

λ↑∞
λ2Ix

= 2(d + 1) ln λ

(d − 1)(d + 2)
V

µν

(1;4)(x, φ)Qαβ
µν + O(λ0, ξ ) (178)

and

lim
λ↑∞

λ3V
αβ;µ
(2;6)

(x

λ
, φ(1/λ)

)
= lim

λ↑∞
λ3Ix

= 2(d + 1) ln λ

(d − 1)(d + 2)
V

µρ

(1;4)(x, φ)Qαβ
ρσ xσ + O(λ0, ξ ) (179)

and

lim
λ↑∞

λ4V
αβ;µν

(2;8)

(x

λ
, φ(1/λ)

)
= lim

λ↑∞
λ4Ix

= 4(d + 1) ln λ

(d − 1)(d + 2)
V

αβ

(1;4)(x, φ)Qµν
ρσ xρxσ + O(λ0, ξ ). (180)

The tensor structure of the diagrams is specified by

Qαβ
µν := 1

2
∂µ∂νx2T αβ(x, 2) = δαβδµν − δα

µδβ
ν + δα

ν δβ
µ

d + 1
. (181)

Only the index symmetric part of the above diagrams contributes to (177) owing
to the contraction with fully symmetric quantities. As in Secs. (8) and Secs. (9)
this fact is emphasized by omitting semicolons between non-symmetric indices.

In Sec. (8) it was shown that up to second order in ξ the perturbative ex-
pression of any structure function in the inertial range is compatible with that
of a homogeneous function. This information together with the scaling limits
(178), (179) and (180) permit to verify after some straightforward algebra that the
structure function operator has a finite scaling limit

lim
λ↑∞

λζ2n, j

∫
d�dY ∗

j0(x̂)(LλS2n)
(x

λ
; φ

)
=

(
2∑

r=0

ξ r

r !

drλζ2n, j

dξ r

) ∫
d�dY ∗

j0(x̂)S (0)
2n (x)

+ ξ

(
1∑

r=0

ξ r

r !

drλζ2n, j

dξ r

) ∫
d�dY ∗

j0(x̂)
{

S(1)
2n (x; φ) − S (0)

2n (x)ζ (1)
2n ln λ

}
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+ ξ 2

2

∫
d�dY ∗

j0(x̂)

{
S(2)

2n (x; φ) − 2S(1)
2n (x; φ)ζ (1)

2n; j ln λ

+ S (0)
2n (x)

[(
ζ

(1)
2n; j ln λ

)2 − ζ
(2)
2n; j ln λ

] }

+ O(ξ 3) = S�
2n; j (x; φ) (182)

with S(i)
2n (x; φ), i = 1, 2 obtained by gathering the field dependence in (177) ac-

cording to its asymptotic behavior in λ and provided the scaling dimension ζ2n, j

is specified by (93).
The conclusion of the above analysis is that the infra-red renormalization of

the structure function operator produces a well defined scaling field. It is worth
noting that this conclusion holds also had we averaged out the velocity field from
the outset. The resulting scaling field will then depend only on the ultra-violet
degrees of freedom of the scalar and ghost fields but it has the same scaling
exponent.

13. ULTRA-VIOLET RENORMALIZATION GROUP

Ultra-violet renormalization group addresses the question of removing the
ultraviolet cutoff in the theory stemming from the one (M) in the velocity co-
variance. Although the correlation functions of the θ fields have a well defined
M → ∞ limit the gradients will not have as was discussed in Sec. 9. Ultra-violet
renormalization will study that divergence by finding the appropriate scaling fields.

Ultra-violet renormalization was applied to the Kraichnan model in Refs. 2,
3, 5 in the framework of the minimal subtraction scheme. (19,40,51,59) The minimal
subtraction scheme has the merit to provide probably the most computationally
efficient setting for the determination of the scaling exponents ζ2n, j which in
Refs. 2, 3 were determined up to third order in ξ .

The purpose of the present section is to reproduce to leading order in ξ the
same calculation using Wilson’s original scheme in order to render the comparison
with infra-red renormalization more transparent.

13.1. The Effective Action

In order to inquire the limit M tending to infinity, it is more convenient not
to use rescalings in the renormalization group, i.e. to proceed as in Eq. (114). The
fluctuation covariances have momenta on [m̄, M] and they become in the limit of
infinite ultra-violet cutoff

lim
M↑∞

δR(x, t) = ıH0(t)
∫

ddp

(2π )d
eıp·x− ��

2 p2tχ[m̄,∞](p) (183)
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and

lim
M↑∞

δDαβ(x) = ξ D0(t)
∫

ddp

(2π )d

eıp·x

pd+ξ
�αβ(p)χ[m̄,∞](p). (184)

Since the main interest is to determine the statistical properties of the scalar and
the ghost fields, the renormalization group transformation will be applied directly
to the interaction term obtained by averaging out all the degrees of freedom of the
velocity field. The effective action at scale m̄ stabilizes trivially as M → ∞ at all
orders in perturbation theory. At first order it is simply given by

Am̄ = ξ

2
〈θ̄∂αθ, D(0)αβ θ̄∂βθ〉 + o(ξ 2) (185)

with

D(r )αβ = dr

dξ r

∣∣∣∣
ξ=0

Dαβ. (186)

13.2. Ultra-Violet Renormalization Group Analysis

of Radial Gradients

More interesting flow is found once we look at the scaling fields involving
gradients of the scalar. Let Lm̄ be the linearization of the above renormalization
group in the limit as M tends to infinity. Acting on radial gradients ultraviolet
renormalization gives

Lm̄[x̂ · ∂θ (y, t)]2n = [x̂ · ∂θ (y, t)]2n

−ıξ

(
2n

1

)
[x̂ · ∂θ (y, t)]2n−1[x̂ · ∂δθ (y, t)]〈δθ̄∂αθ, D(0)αβ θ̄∂βθ〉

−ξ

(
2n

2

)
[x̂ · ∂θ (y, t)]2n−2[x̂ · ∂δθ (y, t)]2〈δθ̄∂αθ, D(0)αβδθ̄∂βθ〉

+O(ξ 2). (187)

In order to streamline the notation, on the right hand side of (187) coarse grained
fields with ultra-violet cutoff m̄ are represented by the letters θ, θ̄ . Leading order
corrections are specified by the couplings

[x̂ · ∂δ θ (y, t)]〈δθ̄∂αθ, D(0)αβ θ̄∂βθ〉

=
∫ t

−∞
ds

2∏
i=1

dd yi [x̂ · (∂yδR)(y − y1, t − s)]

×Dα1α2 (y1 − y2)θ̄(y j , s)
2∏

j=1

∂α j θ (y j , s) (188)
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and

[x̂ · ∂δθ (y, t)]2〈δθ̄∂αθ, D(0)αβδθ̄∂βθ〉

=
∫ t

−∞
ds

2∏
i=1

dd yi D(0)α1α2 (y1 − y2)
2∏

j=1

[x̂ · (∂yδR)(y − y j , t − s)]∂α j θ (y j , s).

(189)
Let us shift the variables yi → yi + y and Taylor expand

θ (y + yi , t + s) =
∞∑

n,k=0

1

n!k!
[(yi · ∂y)n(s∂t )

kθ ](y, t) (190)

for i = 1, 2. Then the leading order of this expansion gives the most singular part
of the integral as the ultra-violet cut-off tends to infinity. Higher orders improve
the ultra-violet behavior of the integral. Thus it is found

[x̂ · ∂δ θ (y, t)]〈δθ̄∂αθ, D(0)αβ θ̄∂βθ〉

=
∫ ∞

0
ds

2∏
i=1

dd yi x̂ · (∂yδR)(y1, s)Dα1α2 (y1 − y2)

+ O

(
1

M2
,

1

m̄2

)
= O

(
1

M2
,

1

m̄2

)
(191)

by parity and

[x̂ · ∂δθ (y, t)]2〈δθ̄∂αθ , D(0)αβδθ̄∂βθ〉
(192)

= U (0)αβ

(1:4) (m̄, M)[∂αθ (y, t)][∂βθ (y, t)] + O

(
1

M2
,

1

m̄2

)

where Uαβ

(1:4) was given in (104) and it is here evaluated in the momentum range
[m̄, M]. The terms neglected are irrelevant for the determination of the scaling
dimension. This latter is exhibited in the scaling limit which in the present context
can be taken by fixing the ratio

0 < λ = m̄

M
< 1 (193)

and by considering

lim
M↑∞

λ
ηG2n, j

∫
d�Y j0(x̂)LλM [x̂ · ∂θ ]2n =

An||∂θ ||2n

{
1 + ξ

[
η

(1)
G2n, j

− n(d+2n)

d + 2
+ (d + 1) j(d + j − 2)

2(d − 1)(d + 2)

]
ln λ

}
+ O(ξ 2)

(194)
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where

η
(1)
G2n, j

:= d

dξ

∣∣∣∣
ξ=0

η(∂θ)2n . (195)

The derivation of (194) exploits the integral identity∫
d�Y j,0(x̂)[x̂ · ∂θ (y, t)]2n = An, j [∂θ · ∂θ ]n(y, t) (196)

with An satisfying (see appendix E for the proof)

(d + 1)
An−1, j

An, j
− 2 = d − 1

2n − 1

[
d + 2n − (d + 1) j(d + j − 2)

2n(d − 1)

]
. (197)

Existence of scaling requires the cancellation of the λ dependence in (194) whence
it follows

η
(1)
G2n, j

= n(d + 2n)

d + 2
− (d + 1) j(d + j − 2)

2(d − 1)(d + 2)
. (198)

Thus, ‖∂θ‖2n + O(ξ 2) is a scaling field and the isotropic component of the radial
gradients scales with the ultraviolet cut-off

∫
d�Y j0(x̂) ≺ (x̂ · ∂θ )2n � ∼ Mnξ

(
M

m

)ρ2n, j

(199)

with ρ2n, j given (85).
Let us finish this section by comparing our treatment of the UV problem

with that of Refs. 2, 3, 5. In these papers the anomalous exponents of the scalar
gradients are computed using the field theoretic RG derived from dimensionally
regularized perturbation expansion. Their starting point for the MSR theory differs
from ours in two ways. First their velocity covariance (4) has D0ξ replaced by a
constant with no explicit ξ dependence. Second, perturbation theory is done to the
Stratonovich representation of the model (1).

The first difference means that the “bare” correlation functions C2n need to be
multiplied by a “renormalization constant” proportional to ξ−2n to get a nontrivial
limit as ξ → 0.

The second difference leads to a logarithmic UV divergence at ξ = 0 which
can be traced to the M dependence of the effective diffusivity κ in (26). Since
the authors work in dimensional regularization an UV cutoff doesn’t enter but its
role is played by ξ that plays the same role as d − 4 in dimensional regularization.
Using the Ito representation in the perturbation as we do the logarithmically UV
divergent tadpole diagram doesn’t enter and the only divergences to be dealt with
are infrared. In both approaches the UV problem for the action is trivial, indeed,
the authors find a simple fixed point ξ for a running coupling constant describing
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the strength of the nonlinearity and their perturbation expansion becomes an
expansion in powers of ξ .

14. CONCLUSIONS

The Kraichnan model has the rare feature to allow for detailed analytical
study of a turbulent system. In particular it allows to address the question of what
kind of renormalization group if any is appropriate for turbulence, the traditional
ultraviolet one or the more exotic inverse or infrared one.

In the context of the Kraichnan model both direct and inverse renormalization
can be successfully applied. Direct renormalization is natural when studying the
short distance singularities that appear when the dissipative scale is taken to zero.
The scaling fields are local operators in the derivatives of the scalar and the
exponents may be computed using various versions of the UV RG, in dimensional
regularization as in Refs. 2, 3, 5, 55 or in the Wilsonian framework as in the present
paper.

The inverse RG appears more natural for dealing with inertial range quantities
such as the nonlocal operators that enter the study of the structure functions. The
scaling fields are now very nonlocal in position space. We implemented the inverse
RG in the Wilsonian framework. Although cumbersome it has the advantage of
being conceptually clear. However other more computationally effective inverse
schemes should be possible too.

A natural question is whether infra-red renormalization may be of use in the
analysis of physical models other than Kraichnan’s. It is important here to stress
that the possibility of successfully applying infra-red renormalization ultimately
relies on the physics of the system. It remains a challenge for the future to establish
whether such tool may prove useful to inquire scaling properties of systems for
which direct renormalization cannot be applied.

APPENDICES

A. MELLIN TRANSFORM

We use the following definition of the Mellin transform of a function f :
[0,∞] → R:

f̃ (x, z) =
∫ ∞

0

dw

w

f (wx)

wz
= xz

∫ ∞

0

dw

w

f (w)

wz
:= xz J (z). (A.1)

Suppose f is given by

f (x) = xag(x) (A.2)
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with g decaying faster than any power at infinity. Then the Mellin transform is
defined and analytic for 
z < a. It has a pole at a. Indeed, write

f̃ (x ; z) = xz
∫ ∞

0

dw

w

g(w)

wz−a
= − xz

z − a

∫ ∞

−∞
du e−u g(e

u
z−a ) (A.3)

so the residue is given by

Res f̃ (x ; a) = −xzg(0). (A.4)

If g is smooth at origin further “ultra-violet” poles will occur in a + n for any
integer n, in correspondence with the Taylor expansion of g. If g has only power
law decay at infinity, say

g(x) ∼ x−b, b > 0 (A.5)

the Mellin transform will exhibit “infra-red” poles also in −b − n, n = 0, . . ..
The inverse Mellin transform is

f (x) =
∫ c+i∞

c−i∞

dz

(2π ı)
xz J (z) (A.6)

with c less than a. The inverse is usually computed by Cauchy’s residue theorem.
Finally for a function f (x) on Rn we define

f̃ (x, z) =
∫ ∞

0

dw

w

f (wx)

wz
x2

∫ ∞

0

dw

w

f (w X̂ )

w2
(A.7)

with x = |x|.
More details can be found for example in the textbook. (49) Useful examples

of application of the Mellin transform to diagrammatic expansions in field theory
are given also in Ref. 48.

B. EVALUATION OF THE INERTIAL RANGE ASYMPTOTICS

OF THE VELOCITY FIELD

An algorithmically efficient evaluation of (18) is achieved using the integral
representation of a power law:

1

xz
=

∫ ∞

0

du

u

u
z
2 e−ux2

�
(

z
2

) , z > 0. (B.1)

Namely, for negative values of z the order of integration in (18) can be inverted:

D̃αβ(x, m; z) = − D0ξmz−ξ

z − ξ

∫
ddq

(2π )d

eıq·x

qd+z
�αβ(q̂). (B.2)

The integral is absolutely convergent in the infra-red and is convergent in the
ultra-violet because of the oscillatory exponential. Furthermore incompressibility
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constrains the tensorial structure of the integral to the form

D̃αβ(x, m; z) = D̃γ
γ (x; m)

T µ
µ(x̂, z)

T αβ(x̂, z) (B.3)

with T αβ defined by (15). Thus, the knowledge of the trace allows to reconstruct
(19). The trace can be computed using the identity

∫
ddq

(2π )d

eıq·x

qd+z
= xz

2z(4π )
d
2

�
(− z

2

)
�

(
d+z

2

) (B.4)

which is derived using (B.1). The result is

D̃γ
γ (x, m; z)

T µ
µ(x̂, z)

= Dξmz−ξ xz

z(z − ξ )

(z + d − 1)d

(d − 1)(d + z)

�
(

d
2

)
�

(
1 − z

2

)
2z�

(
d+z

2

) (B.5)

with D now given by (11). Inserting (B.5) in (B.3) recovers (19).
An alternative derivation of (B.5) which does not use oscillatory integrals is

available from Ref. 53.

C. FIRST ORDER APPROXIMATION

Rewriting (78) as the difference

Vαβ

(1;4)(x, m) = 2
D0mξ

D

∫
q≥m

ddq

(2π )d

�αβ(q̂)

qd+2+ξ
− 2

D0mξ

D

∫
q≥m

ddq

(2π )d

eıq·x

q2

�αβ(q̂)

qd+ξ

(C.1)
permits to evaluate it using the same method expounded in appendix B. The Mellin
transform of the second interval on the right hand side of (C.1) is well defined for
Rz < −2. However, the residue of the pole in z = −2 cancels exactly with the
first integral on the right hand side of (C.1). Observing that (C.1) has vanishing
divergence its Mellin transform can be finally written as

Ṽαβ(x, m; z + 2) = Ṽγ

(1;4)γ (x; m, z + 2)

T µ
µ(x̂, z + 2)

T αβ(x̂, z + 2), −2 < 
z < 0

(C.2)
with

Ṽγ

(1;4)γ (x, m; z + 2)

T µ
µ(x̂; z + 2)

= 2(d + z + 1)c(z)

(z + 2)(d + z − 1)(d + 2 + z)

mz x2+z

z(z − ξ )
(C.3)

and c(z)defined by (20). Setting ξ to zero, (C.2) has a double pole at z equal
zero. The amplitude of such pole specifies is equal to minus the prefactor of the
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logarithm in the short distance asymptotics of the diagram

V (0)αβ

(1;4) (x; m) = − (d + 1)x2T αβ(x̂, 2)

(d − 1)(d + 2)

[
ln

(mx

2

)
− ψ

(
d+4

2

) + ψ(1)

2

]

+ x2δαβ

2(d + 2)
+ O(m2x2) (C.4)

with

ψ(x) = d

du

∣∣∣∣
u=0

ln �(u + x). (C.5)

Differentiating the Mellin transform with respect to ξ higher orders contribution
are found. In particular

V (1)αβ

(1;4) (x; m) = − (d + 1)x2T αβ(x̂, 2)

2(d − 1)(d + 2)

[
ln

(mx

2

)]2

+
{

(d + 1)x2T αβ(x̂, 2)

(d − 1)(d + 2)

ψ
(

d+4
2

) + ψ(1)

2
+ x2δαβ

2(d + 2)

}
ln

(mx

2

)

+O(m2x2). (C.6)

For more details the reader is referred to Ref. 53.

D. SECOND ORDER APPROXIMATION

The scope of this appendix is to expound the computational strategy followed
in the evaluation of the second order diagrams and to give the final results used
in the determination of the scaling exponents. Further details together with the
computer packages used in the practical evaluation are available from ref. 53.

The evaluation of higher order integrals is hampered by the fact that the
Mellin transform with respect of the spatial argument of the structure functions
does not remove uniformly the mass cutoff from all the momentum integrations.
The problem is obviated by taking the convolution of as many Mellin transforms
as the number of momentum integration affected by the cutoff. The procedure can
be illustrated by considering the general form of second order diagrams:

Ṽ(x, z + n) =
∫ ∞

0

dw

w

1

wz+n

∫
p,q>m

ddpddq

(2π )2d

f (p, q, wx)

qd pd
. (D.1)

The integer n is fixed by the degree of homogeneity of the function f :

f (wp, wq, wx) = wn f (p, q, x). (D.2)
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Thus the translation of the origin in the complex z-plane makes sure that the
integration contour of the Mellin anti-transform poles lies to the left of the pole in
z equal zero. By rescaling the integral becomes

Ṽ(x, z + n) =
∫ ∞

0

dw

w

mz

wz

∫
p,q>w

dd pddq

(2π )2d

f (p, q, x)

qd pd
, z < 0. (D.3)

Taking the convolution with a second Mellin transform allows to deal with un-
bounded momentum integrations:

Ṽ(x, z + n) =
∫ ∞

0

dw

w

mz

wz

∫
z<
ζ<0

−∞<�ζ<∞

dζ

(2π ı)

∫ ∞

0

du

u

1

uζ

∫
p,q>w

dd pddq

(2π )2d

f (p, q, x)

qd pd

=
∫

z<
ζ<0
−∞<�ζ<∞

dζ

(2π ı)

mz

ζ (z − ζ )

∫
dd pddq

(2π )2d

f (p, q, x)

qd+ζ pd+z−ζ
.

(D.4)
Performing, eventually with the help of the representation of a power-law (B.1),
the integration over momenta leaves with an integral over the Mellin variable ξ .
In order to determine the scaling exponents up to second order, it is necessary
to compute the Mellin transform of each diagram up to O(z−1)accuracy. The
observation allows for some simplifications. Namely dimensional considerations
impose

f̃ (x, ζ, z − ζ ) :=
∫

dd pddq

(2π )2d

f (p, q, x)

qd+ζ pd+z−ζ
= xz+n f̃ (x̂, ζ, z − ζ ) (D.5)

with f̃ not vanishing for z equal zero. Thus, it is possible to infer the form of the
Laurent expansion for z and ζ in the neighborhood of zero

f̃ (x, ζ, z − ζ ) = xz+n

z

[
f̃(−3;1)(x̂)

ζ
+ f̃(−3;1)(x̂)

z − ζ
+ f̃(−2) + O(ζ, z − ζ )

]
. (D.6)

The knowledge of the first two poles of f̃ around ζ equal zero suffices to reconstruct
the first two terms of the Laurent series around z equal zero of Ṽ:

Ṽ(x, z + n) = xn(mx)z
∫

z<
ζ<0
−∞<�ζ<∞

dζ

2π

m−2

zζ (z − ζ )

×
[

f̃(−3;1)(x̂)

ζ
+ f̃(−3;2)(x̂)

z − ζ
+ f̃(−2) + O(ζ, z − ζ )

]
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= xn(mx)z

[
f̃(−3;1)(x̂) + f̃(−3;2)(x̂)

z3
+ f̃(−2)(x̂)

z2

]
+ O(z−1). (D.7)

In essence, inner Mellin transforms work as regularized Taylor expansions for
the argument of multi-loop integrals. The method was applied to the evalua-
tion of V(2;4) and V(2;6). The integral V(2;8) in the limit of infinite integral scale
of the forcing reduces to the product of two first order integrals. The evalua-
tion of its Mellin transform through convolutions can be used to check of the
procedure.

D.1. Evaluation of V(2;4)

The diagram Vαβ

(2;4) is most conveniently evaluated if its real space represen-
tation

Vαβ

(2;4) = 2

ξ

∫ ∞

0
ds

∫
dd y

e− y2

4��s − e− (x−y)2

4��s

(4π��s)
d
2

Dµν(y; m)(∂µ∂νVαβ

(1;4))(y; m) (D.8)

is adopted as a starting point for its evaluation. The choice of the prefactor guar-
antees that at zero molecular viscosity the interaction term is order is of the order
O(ξ 0). The reason is that in real space space (D.8) has the same structure of the
first order vertex Vαβ

(1;4). Once the Mellin transform of this latter is known, the use
of the Mellin convolution technique (appendix A) reduces the evaluation (D.8) to
that of an integral similar of the same type of (78). More explicitly the Mellin
transform is

Ṽαβ

(2;4)(z + 2) =
2

ξ

∫
z<
ζ<0

−∞<�ζ<∞

dζ

2π

∞∫
0

ds

∫
dd y

e− y2

4��s − e− (x−y)2

4��s

(4π��s)
d
2

D̃µν(y, m, ζ )(∂µ∂νṼαβ

(1;4))(y,m, z − ζ )

(D.9)
The integrals over space-time variables can be performed exactly:

Ṽαβ

(2;4)(z + 2) =
∫

z<
ζ<0
−∞<�ζ<∞

dζ

2π

×
2−zmz−2ξ xz�

(
2+d

2

)2
�

(
1 − ζ

2

)
�

(
2+ζ−z

2

)
[P0(z, ζ, d)x2δαβ − P1(z, ζ, d)xαxβ ]

(d − 1)2ζ (ζ − z)z(2 + z)(2 + d + z)(ζ − ξ )(ζ − z + ξ )�
(

4+d+ζ

2

)
�

(
2+d−ζ+z

2

)

(D.10)
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with

P0(z, ζ, d) = z[d2(2 + z) + d3 − 3z − 4 − 3d]

+ζ [2 + d2z − z2 + d(2 + z + z2)] (D.11a)

P1(z, ζ, d) = (2 + z)[d2ζ − (2 + ζ )z + dζ (1 + z)]. (D.11b)

In order to determine scaling exponents with second order accuracy it is enough to
evaluate (D.10) at ξ equal zero. To that goal the integral over ξ can be performed
by applying Cauchy theorem in the complex ξ plane. Since the contour is has
clockwise orientation residues must multiplied by a minus sign. Logarithmic
contributions to (D.8) are associated to the triple and double pole in z of the
Mellin transform. These latter ones are fully specified if (D.10) is approximated
by its first residue for ξ equal zero. The result can be couched into the form

Ṽ (0)αβ

(2;4) (x;z + 2) =

−
(mx

2

)z
{[

1

z3
− ψ

(
d+2

2

) + ψ(1)

2z2

]
V αβ

(2;4;1)(x) + V αβ

(2;4;2)(x)

z2

}
+ O(z−1)

(D.12)

with the function ϕ defined by (C.5). The tensor coefficients appearing in (D.12)
are

Ṽαβ

(2;4;1)(x) := 2
(d + 1)(d2 + d − 3)x2δαβ − (d2 + d − 4)xαxβ

(d − 1)2(d + 2)2
(D.13)

and

Ṽαβ

(2;4;2)(x) := [4 − d(d3 + 4d2 + d − 10)]x2δαβ − 8xαxβ

(d − 1)2(d + 2)3
. (D.14)

The residue in z equal zero of (D.8) specifies the inertial range asymptotics of the
diagram at leading order in ξ .

D.2. Evaluation of V(2;6)

The Mellin transform of V(2;6) can be written as the sum of three terms

Ṽαβ;µ
(2;6) (z + 3) =

3∑
i=1

Ṽαβ;µ
(2;6;i)(z + 3) (D.15)

with

Ṽαβ;µ
(2;6;1)(z + 3) =

∞∫
0

dw

w

D2
0mz−2ξ

D2wz−2ξ

∫
q≥w

p≥w

ddqdd p

(2π)2d

2 sin(p · x)

(q2 + q · p + p2)q2

qν�
µν (p̂)�αβ (q̂)

pd+ξ qd+ξ
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Ṽαβ;µ
(2;6;2)(z + 3) =

∞∫
0

dw

w

D2
0mz−2ξ

D2wz−2ξ

∫
q≥w

p≥w

ddqdd p

(2π)2d

2 sin(p · x)

(q2 + q · p + p2)q2

qν�
µν (p̂)�αβ (q̂)

pd+ξ qd+ξ

Ṽαβ;µ
(2;6;3)(z + 3) = −

∞∫
0

dw

w

D2
0mz−2ξ

D2wz−2ξ

∫
q≥w

p≥w

ddqdd p

(2π)2d

2 sin[(q + p) · x]

(q2 + q · p + p2)q2

qν�
µν (p̂)�αβ (q̂)

pd+ξ qd+ξ

(D.16)

In order to determine the scaling exponent within second order, ξ can be set to
zero in the integrands. The three Mellin integrals exist separately in the complex
z-plane for values of z such that Rz < −2. The sum of the three integrals brings
about the cancellations restoring the original domain of convergence of the Mellin
transform of V(2;6).

The explicit evaluation of the integrals is cumbersome but can be performed
using some software for symbolic manipulations. The packages used for the eval-
uation are available for free download from Ref. 53. The final result is

Ṽ (0)αβ;µ
(2;6) (x; z + 3) =

−
(mx

2

)z
{[

1

z3
− ψ

(
2+d

2

) + ψ(1)

2z2

]
V αβ;µ

(2;6;1)(x) + V αβ;µ
(2;6;2)(x)

z2
+ O(z−1)

}
.

(D.17)

The tensor coefficients are

V αβ;µ
(2;6;1)(x) := 4xαxβ xµ + (d + 1)x2[(d − 1)δαβ xµ − δαµxβ − δµβ xα]

(d − 1)2(d + 2)2
(D.18)

V αβ;µ
(2;6;2)(x) := v(1)x

2xµδαβ + v(2)x
2(xβδαµ + xαδµβ) + v(3)x

αxβ xµ (D.19)

where the scalar coefficients {v(i)}3
i=1 are

v(1) =
2(28 + 20d − 15d2 − 8d3 − d4) − 3(12 + 5d − 4d2 − d3)Hyp21

(
1, 1, 2 + d

2 , 1
4

)
4(d − 1)2(d + 2)3(d + 4)

v(2) =
2(−4 + 4d + 3d2 + d3) + 3(4 + 3d + d2)Hyp21

(
1, 1, 2 + d

2 , 1
4

)
4(d − 1)2(d + 2)3(d + 4) (D.20)

v(3) = −2(6 + d + d2) + 3d Hyp21

(
1, 1, 2 + d

2 , 1
4

)
(d − 1)2(d + 2)3(d + 4)

.
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D.3. Evaluation V(2,8)

As shown in the main text, when the integral scale of the forcing tends to
infinity, this integral factorizes to

Vαβ;µv

(2,8) = Vαβ

(1,4)V
µν

(1,4). (D.21)

Hence, the knowledge of the small scale asymptotics of the first order vertex
V(1,4) suffices to determine the one of V(2,8). Scaling exponents are conveniently
evaluated using the Mellin transform of diagrams. Noting that V(1,4) has the form

V = A(x) ln x + B(x) (D.22)

with A, B some cut-off functions having finite value in zero and vanishing at
infinity, the Mellin transform of (D.21) can be represented as

Ṽ2(x, z) = xz
∫ ∞

−∞
due−u

[
A2(e

u
z )

u2

z3
+ 2B(e

u
z )A(e

u
z )

u

z2
+ B2(e

u
z )

z

]
. (D.23)

For z tending to zero from below one finds

lim
z↑0

Ṽ2(x, z) =
∫ ∞

0
due−u

[
A2(0)

u2

z3
+ 2B(0)A(0)

u

z2
+ B2(0)

z

]
+ O(z0).

(D.24)

The equality entails that

Ṽ (0)αβµν

(2,8) (xz + 4) =

−
(mx

2

)z
{[

1

z3
− ψ

(
2+d

2

) + ψ(1)

2z2

]
V αβ;µν

(2;8;1) (x) + V αβ;µν

(2;8;2) (x)

z2
+ O(z−1)

}

(D.25)

with

V αβ;µν

(2;8;2) (x) := 2(d + 1)2x4T αβ(x̂, 2)T µν(x̂, 2)

(d − 1)2(d + 2)2
(D.26a)

V αβ;µν

(2;8;1) (x) :=

−d(3 + 4d + d2)x4δαβδµν + 8xαxβ xµxν − (2 + 5d + d2)x2(δµν xαxβ + δαβ xmu xnu)

(d − 1)2(d + 2)3
.

(D.26b)
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E. ANGULAR INTEGRALS

Let ω denote the azimuthal angle in a given reference frame. The projection
of powers of cos ω onto hyperspherical harmonics with zero magnetic numbers
can be evaluated by considering the generating function

∞∑
n=0

(ız)n

n!

∫
d�Y ∗

j ;0(�) cosn(ω) =
∫

d�Y j ;0(�)eız cos(ω) (E.1)

The exponential can be expanded in hyperspherical harmonics

e z cos(ω) =
∞∑
j=0

ı j N j,d

z
d−2

2

BesJ

(
j + d − 2

2
; z

)
Y j ;0(�) (E.2)

with N j,d normalization factor irrelevant for the present considerations. Since

BesJ

(
j + d − 2

2
; z

)
=

( z

2

) j+ d−2
2

∞∑
k=0

(
− z2

4

)k

�(k + 1)�( j + d−2
2 + k + 1)

(E.3)

angular integrals are just the n-th coefficient of the Taylor expansion

∫
d�Y ∗

j ;0(�) cosn(ω) = 21− d
2 −n N j,d�(1 + n)

�
(

2− j+n
2

)
�

(
d+ j+n

2

) (E.4)

whence (197) follows.

F. GRADIENT EXPANSION INTEGRALS

The first order integral can be readily performed

µ
αβ

(1;4)(z) = D0mξ Mz

zD

∫
∞>p≥m

dd p

(2π )d

(p · x)2

p2

�αβ(p̂)

pd+z+ξ
(F.1)

= (d + 1)x2

z(z + ξ )(d − 1)(d + 2)

(
M

m

)2

T αβ(x̂, 2).

Second order integrals can be performed by resorting to the Mellin-convolution
techniques expounded in the previous appendix D. Second order integrals can be
always reduced to the scalar form

U(M, m; z) =
∫


ζ<z
−∞<�ζ<∞

dζ

2π

MzG(m, ζ, z − ζ )

zζ (z − ζ )
(F.2)
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with

G(m, ζ, z − ζ )=
∫ ∞

m

∫ ∞

m

dpdq

pq

ϕ(p, q)

pz−ζ qzeta
= mzz

∫ ∞

1

dq

q

[
ϕ(1, q)

qζ
+ ϕ(q, 1)

qz−ζ

]

(F.3)
and angular degrees of freedom re-absorbed into the definition of ϕ.

The integrals to perform are essentially those calculated in Ref. 3 when
direct renormalization and dimensional regularization were applied to compute
the scaling exponents of the Kraichnan model. The reader interested to the details
of the calculations is therefore referred to Ref. 3. Here the results are presented in
the

U (0)αβ

(2;4) =
(

M

m

)z
[

V αβ

(2;4;1)(x)

z3
+ Uαβ

(2;4;1)(x)

z2
+ O(z−1)

]

U (0)αβ;µ
(2;6) =

(
M

m

)z
[

V αβ;µ
(2;6;1)(x)

z3
+ Uαβ;µ

(2;6;1)(x)

z2
+ O(z−1)

]
(F.4)

where V(2;4;1) and V(2;6;1) were respectively defined in (D.13), (D.18) while

Uαβ

(2;4;1)(x) := −2(d + 1)
x2δαβ − dxαxβ

(d − 1)2(d + 2)3
(F.5)

and

Uαβ;µ
(2;6;2)(x) := u(1)x

µx2δαβ + µ(2)x
2(xβδαµ + xαδµβ) + µ(3)x

αxβ xµ (F.6)

where the scalar coefficients {u(i)}3
i=1 are

u(1) = −3
8(1 + d) + (−12 − 5d + 4d2 + d3)Hyp21(1, 1, 2 + d

2 , 1
4 )

4(d − 1)2(2 + d)3(4 + d)

u(2) = 8(1 + d)2 − 3(4 + 3d + d2)Hyp21(1, 1, 2 + d
2 , 1

4 )

4(d − 1)2(2 + d)3(4 + d)

u(3) = −4 − 2d + 2d2 + 3dHyp21(1, 1, 2 + d
2 , 1

4 )

(d − 1)2(2 + d)3(4 + d)
. (F.7)
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